Delayed recovery of contractile function after myocardial ischemia may be due to prolonged recovery of high-energy phosphates, persistent acidosis, increased inorganic phosphate, and/or calcium loading. To examine these potential mechanisms, metabolic parameters measured by 31P nuclear magnetic resonance spectroscopy, and spontaneous diastolic myofilament motion caused by sarcoplasmic reticulum-myofilament calcium cycling indexed by the scattered light intensity fluctuations (SLIF) it produces in laser beam reflected from the heart, were studied in isolated atrioventricularly blocked rat hearts (n = 10) after 65 min of ischemia at 30 degrees C. All metabolic parameters recovered to their full extent 5 min after reperfusion. Developed pressure evidenced a small recovery but then fell abruptly. This was accompanied by an increase in end diastolic pressure to 37 +/- 5 mm Hg and a fourfold increase in SLIF, to 252 +/- 58% of baseline. In another series of hearts initial reperfusion with calcium of 0.08 mM prevented the SLIF rise and resulted in improved developed pressure (74 +/- 3% vs. 39 +/- 13% of control), and lower cell calcium (5.9 +/- 3 vs. 10.3 +/- 1.4 mumol/g dry wt). Thus, during reperfusion, delayed contractile recovery is not associated with delayed recovery of pH, inorganic phosphate, or high-energy phosphates and can be attributed, in part, to an adverse effect of calcium loading which can be indexed by increased SLIF occurring at that time.
R G Weiss, G Gerstenblith, E G Lakatta
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 92 | 0 |
62 | 28 | |
Scanned page | 247 | 13 |
Citation downloads | 32 | 0 |
Totals | 433 | 41 |
Total Views | 474 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.