Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (143)

Advertisement

Research Article Free access | 10.1172/JCI114488

Endothelin receptor is coupled to phospholipase C via a pertussis toxin-insensitive guanine nucleotide-binding regulatory protein in vascular smooth muscle cells.

Y Takuwa, Y Kasuya, N Takuwa, M Kudo, M Yanagisawa, K Goto, T Masaki, and K Yamashita

Department of Internal Medicine, University of Tsukuba, Ibaraki, Japan.

Find articles by Takuwa, Y. in: PubMed | Google Scholar

Department of Internal Medicine, University of Tsukuba, Ibaraki, Japan.

Find articles by Kasuya, Y. in: PubMed | Google Scholar

Department of Internal Medicine, University of Tsukuba, Ibaraki, Japan.

Find articles by Takuwa, N. in: PubMed | Google Scholar

Department of Internal Medicine, University of Tsukuba, Ibaraki, Japan.

Find articles by Kudo, M. in: PubMed | Google Scholar

Department of Internal Medicine, University of Tsukuba, Ibaraki, Japan.

Find articles by Yanagisawa, M. in: PubMed | Google Scholar

Department of Internal Medicine, University of Tsukuba, Ibaraki, Japan.

Find articles by Goto, K. in: PubMed | Google Scholar

Department of Internal Medicine, University of Tsukuba, Ibaraki, Japan.

Find articles by Masaki, T. in: PubMed | Google Scholar

Department of Internal Medicine, University of Tsukuba, Ibaraki, Japan.

Find articles by Yamashita, K. in: PubMed | Google Scholar

Published March 1, 1990 - More info

Published in Volume 85, Issue 3 on March 1, 1990
J Clin Invest. 1990;85(3):653–658. https://doi.org/10.1172/JCI114488.
© 1990 The American Society for Clinical Investigation
Published March 1, 1990 - Version history
View PDF
Abstract

The mechanisms of endothelin-1 (ET) actions were investigated in cultured rat aortic vascular smooth muscle A-10 cells. The A-10 cells have a single class of high affinity binding sites for ET with an apparent Mr of 65,000-75,000 on SDS-PAGE. Stimulation of cells with ET induces mobilization of Ca2+ from both intra- and extracellular pools to produce a biphasic increase in cytoplasmic free Ca2+ concentration. ET increases cellular levels of inositol trisphosphate and 1,2-diacylglycerol, indicating activation of phospholipase C by ET. ET stimulates production of inositol phosphates in membranes prepared from A-10 cells in the presence of guanosine 5'-O-(thiotriphosphate) (GTP gamma S), but not in its absence. Further, specific binding of 125I-labeled ET to A-10 cell membranes is shown to be inhibited by GTP gamma S in a dose-dependent manner. Treatment of A-10 cells with pertussis toxin induces ADP-ribosylation of a 41,000-D membrane protein but fails to block the ET-induced increases in inositol phosphate production and Ca2+ mobilization. These results indicate that the receptor for ET is coupled to phospholipase C via a guanine nucleotide-binding regulatory protein which is distinct from the pertussis toxin substrate in A-10 cells.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 653
page 653
icon of scanned page 654
page 654
icon of scanned page 655
page 655
icon of scanned page 656
page 656
icon of scanned page 657
page 657
icon of scanned page 658
page 658
Version history
  • Version 1 (March 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (143)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts