Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Sequences of complementary DNAs that encode the NA1 and NA2 forms of Fc receptor III on human neutrophils.
P A Ory, … , S B Clarkson, I M Goldstein
P A Ory, … , S B Clarkson, I M Goldstein
Published November 1, 1989
Citation Information: J Clin Invest. 1989;84(5):1688-1691. https://doi.org/10.1172/JCI114350.
View: Text | PDF
Research Article

Sequences of complementary DNAs that encode the NA1 and NA2 forms of Fc receptor III on human neutrophils.

  • Text
  • PDF
Abstract

Two polymorphic forms of Fc receptor III (FcR III) are expressed on human neutrophils. These differ with respect to their apparent molecular masses after digestion with N-glycanase, and with respect to their reactivity with MAb Gran 11 and alloantisera which recognize determinants (NA1 and NA2) of the biallelic neutrophil antigen (NA) system. To determine the molecular basis for this polymorphism we isolated RNA from neutrophils of NA1NA1 and NA2NA2 homozygotes and synthesized corresponding cDNAs. cDNAs encoding FcR III were then amplified using the polymerase chain reaction, cloned, and sequenced. The cDNA that encodes FcR III on NA1NA1 neutrophils differed from the cDNA that encodes FcR III on NA2NA2 neutrophils at five nucleotides, predicting four amino acid substitutions. As a result, NA1 FcR III has only four potential N-linked glycosylation sites as compared with six in NA2 FcR III. The amino acid substitutions and differences in the number of potential N-linked glycosylation sites probably account for the different forms of neutrophil FcR III observed after digestion with N-glycanase and for the antigenic heterogeneity of this receptor.

Authors

P A Ory, M R Clark, E E Kwoh, S B Clarkson, I M Goldstein

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 253 13
PDF 53 20
Figure 0 1
Scanned page 170 10
Citation downloads 81 0
Totals 557 44
Total Views 601
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts