Human high molecular weight-B cell growth factor (HMW-BCGF) (60 kD) stimulates activated normal B cells, B cell precursor acute lymphoblastic leukemia (BCP-ALL) cells, hairy cell leukemia (HCL) cells, prolymphocytic leukemia (PLL) cells, and chronic lymphocytic leukemia (CLL) cells. The expression of human high molecular weight B cell growth factor (HMW-BCGF) receptors (R) on clonal populations of leukemic B cells in CLL was studied by ligand binding assays using 125I-labeled HMW-BCGF as well as by immunofluorescence/flow cytometry and Scatchard analyses using an anti-HMW-BCGF R monoclonal antibody (MAb), designated BA-5. There was a high correlation between HMW-BCGF R expression and responsiveness to HMW-BCGF. 60% of CLL cases constitutively expressed HMW-BCGF R and showed a marked proliferative response to HMW-BCGF in [3H]TdR incorporation assays as well as colony assays. Similarly, HCL cells, PLL cells, and activated normal B cells expressed functional HMW-BCGF R, as determined by ligand binding assays using 125I-HMW-BCGF, [3H]TdR incorporation assays, and reactivity with BA-5 MAb. Scatchard analyses indicated the existence of approximately 3,000 HMW-BCGF R/cell on HMW-BCGF responsive CLL cells with an apparent Ka value of 4.6 X 10(7) M-1. The concentrations of HMW-BCGF required for maximum stimulation of CLL cells were two to three orders of magnitude lower than those needed for half maximal receptor occupancy, indicating that only a small fraction of HMW-BCGF R need to be occupied to stimulate leukemic CLL B cells. Crosslinking of surface bound 125I-HMW-BCGF (60 kD) with the bivalent crosslinker DTSSP to its binding site on fresh CLL cells identified a 150-kD HMW-BCGF/HMW-BCGF R complex, suggesting an apparent molecular weight of 90 kD for the receptor protein. The growth stimulatory effects of HMW-BCGF on clonogenic CLL cells did not depend on accessory cells or costimulant factors. The anti-HMW-BCGF R monoclonal antibody BA-5 disrupted HMW-BCGF/HMW-BCGF R interactions at the level of clonogenic CLL cells and inhibited HMW-BCGF-stimulated CLL colony formation in vitro. To our knowledge, this study represents the first detailed analysis of expression, function, and structure of HMW-BCGF R on B lineage CLL cells.
F M Uckun, A S Fauci, M Chandan-Langlie, D E Myers, J L Ambrus
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 102 | 0 |
53 | 13 | |
Scanned page | 581 | 3 |
Citation downloads | 63 | 0 |
Totals | 799 | 16 |
Total Views | 815 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.