Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114274

Immune response to B19 parvovirus and an antibody defect in persistent viral infection.

G J Kurtzman, B J Cohen, A M Field, R Oseas, R M Blaese, and N S Young

Cell Biology Section, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892.

Find articles by Kurtzman, G. in: PubMed | Google Scholar

Cell Biology Section, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892.

Find articles by Cohen, B. in: PubMed | Google Scholar

Cell Biology Section, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892.

Find articles by Field, A. in: PubMed | Google Scholar

Cell Biology Section, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892.

Find articles by Oseas, R. in: PubMed | Google Scholar

Cell Biology Section, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892.

Find articles by Blaese, R. in: PubMed | Google Scholar

Cell Biology Section, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892.

Find articles by Young, N. in: PubMed | Google Scholar

Published October 1, 1989 - More info

Published in Volume 84, Issue 4 on October 1, 1989
J Clin Invest. 1989;84(4):1114–1123. https://doi.org/10.1172/JCI114274.
© 1989 The American Society for Clinical Investigation
Published October 1, 1989 - Version history
View PDF
Abstract

B19 parvovirus has been shown to persist in some immunocompromised patients, and treatment with specific antibodies can lead to decreased quantities of circulating virus and hematologic improvement. A defective immune response to B19 parvovirus in these patients was shown by comparison of results using a capture RIA and immunoblotting. In normal individuals, examination of paired sera showed that the dominant humoral immune response during early convalescence was to the virus major capsid protein (58 kD) and during late convalescence to the minor capsid species (83 kD). In patients with persistent parvovirus infection, variable titers against intact particles were detected by RIA, but the sera from these patients had minimal or no IgG to capsid proteins determined by Western analysis. Competition experiments suggested that this discrepancy was not explicable on the basis of immune complex formation alone and that these patients may have a qualitative abnormality in antibody binding to virus. In neutralization experiments, in which erythroid colony formation in vitro was used as an assay of parvovirus activity, sera from patients with poor reactivity on immunoblotting were also inadequate in inhibiting viral infectivity. A cellular response to purified B19 parvovirus could not be demonstrated using proliferation assays and PBMC from individuals with serologic evidence of exposure to virus. These results suggest that production of neutralizing antibody to capsid protein plays a major role in limiting parvovirus infection in man.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1114
page 1114
icon of scanned page 1115
page 1115
icon of scanned page 1116
page 1116
icon of scanned page 1117
page 1117
icon of scanned page 1118
page 1118
icon of scanned page 1119
page 1119
icon of scanned page 1120
page 1120
icon of scanned page 1121
page 1121
icon of scanned page 1122
page 1122
icon of scanned page 1123
page 1123
Version history
  • Version 1 (October 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts