Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 7 patents
19 readers on Mendeley
  • Article usage
  • Citations to this article (80)

Advertisement

Research Article Free access | 10.1172/JCI114261

Hepatic phosphotyrosine phosphatase activity and its alterations in diabetic rats.

J Meyerovitch, J M Backer, and C R Kahn

Research Division, Joslin Diabetes Center, Boston, Massachusetts 02215.

Find articles by Meyerovitch, J. in: PubMed | Google Scholar

Research Division, Joslin Diabetes Center, Boston, Massachusetts 02215.

Find articles by Backer, J. in: PubMed | Google Scholar

Research Division, Joslin Diabetes Center, Boston, Massachusetts 02215.

Find articles by Kahn, C. in: PubMed | Google Scholar

Published September 1, 1989 - More info

Published in Volume 84, Issue 3 on September 1, 1989
J Clin Invest. 1989;84(3):976–983. https://doi.org/10.1172/JCI114261.
© 1989 The American Society for Clinical Investigation
Published September 1, 1989 - Version history
View PDF
Abstract

Phosphotyrosine phosphatase (PTPase) activity in rat liver was measured using a phosphopeptide substrate containing sequence identity to the major site of insulin receptor autophosphorylation. PTPase activity was detected in both cytosolic and particulate fractions of rat liver and produced linear dephosphorylation over a 15-min time course. In rats made insulin-deficient diabetic by streptozotocin treatment (STZ), cytosolic PTPase activity increased to 180% of the control values after 2 d of diabetes and remained elevated at 30 d (P less than 0.02). Gel filtration on Sephadex-75 revealed a single peak of activity in the cytosol in both control and diabetic animals and confirmed the increased levels. In BB diabetic rats, another model of insulin deficiency, the PTPase activity in the cytosolic fraction was increased to approximately 230% of control values. PTPase activity in the particulate fraction of liver was also increased by 30 and 80% after 2 and 8 d of STZ diabetes, respectively. However, this increase was not sustained and after 30 d of STZ diabetes, PTPase activity associated with the particulate fraction in the BB diabetic rat was reduced to approximately 70% of the control levels. Treatment of STZ diabetic rats with subcutaneous insulin or vanadate in their drinking water for 3 d reduced tyrosine PTPase activity in the particulate, but not in the cytosolic fraction. This was associated with a change in blood glucose toward normal. These data indicate insulin deficient diabetes is accompanied by significant changes in hepatic PTPase activity. Since tyrosine phosphorylation plays a central role in the cellular action of insulin receptor, an increase in PTPase activity may be an important factor in the altered insulin action associated with these diabetic states.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 976
page 976
icon of scanned page 977
page 977
icon of scanned page 978
page 978
icon of scanned page 979
page 979
icon of scanned page 980
page 980
icon of scanned page 981
page 981
icon of scanned page 982
page 982
icon of scanned page 983
page 983
Version history
  • Version 1 (September 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article (80)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 7 patents
19 readers on Mendeley
See more details