Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114167

Stimulation of human prostatic carcinoma cell growth by factors present in human bone marrow.

M Chackal-Roy, C Niemeyer, M Moore, and B R Zetter

Department of Applied Biology, Massachusetts Institute of Technology Cambridge 02139.

Find articles by Chackal-Roy, M. in: PubMed | Google Scholar

Department of Applied Biology, Massachusetts Institute of Technology Cambridge 02139.

Find articles by Niemeyer, C. in: PubMed | Google Scholar

Department of Applied Biology, Massachusetts Institute of Technology Cambridge 02139.

Find articles by Moore, M. in: PubMed | Google Scholar

Department of Applied Biology, Massachusetts Institute of Technology Cambridge 02139.

Find articles by Zetter, B. in: PubMed | Google Scholar

Published July 1, 1989 - More info

Published in Volume 84, Issue 1 on July 1, 1989
J Clin Invest. 1989;84(1):43–50. https://doi.org/10.1172/JCI114167.
© 1989 The American Society for Clinical Investigation
Published July 1, 1989 - Version history
View PDF
Abstract

Malignant prostatic carcinoma, a major cause of cancer mortality in males, most often metastasizes to secondary sites in bone. Frequently, the growth rate of the secondary tumor in bone marrow is considerably greater than that of the slowly growing primary prostatic tumor. We now report that two lines of human prostatic carcinoma cells proliferate in response to conditioned media from unstimulated human, rat, or bovine bone marrow. Nonprostatic tumor cell lines showed little or no growth response to the same medium. The proliferative activity found in bone marrow was not duplicated by any of a variety of purified growth factors including epidermal growth factor (EGF), acidic or basic fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF) alpha or beta, interleukins 1, 2, 3, 4 or 6, granulocyte (G), macrophage (M) or granulocyte-macrophage (GM) colony stimulating factor (CSF). Whereas a mixture of G-CSF, M-CSF, and IL 3 produced a mitogenic response in the prostatic carcinoma cells, these three factors were not present in our bone marrow samples in sufficient quantities to promote the observed proliferative response. To further identify the cellular source of the proliferative activity present in bone marrow-conditioned medium, we tested conditioned media made from human bone marrow stromal cells. The stromal cell conditioned medium stimulated increased growth of the prostatic carcinoma cells to levels equivalent to those observed with the bone marrow conditioned medium. These results suggest that novel mitogenic factors that are produced by bone marrow stromal cells and remain in the bone marrow cavity may account, in part, for the preferential growth of prostatic metastases in bone.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 43
page 43
icon of scanned page 44
page 44
icon of scanned page 45
page 45
icon of scanned page 46
page 46
icon of scanned page 47
page 47
icon of scanned page 48
page 48
icon of scanned page 49
page 49
icon of scanned page 50
page 50
Version history
  • Version 1 (July 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts