We describe the expression and characterization of sodium channels from human brain RNA in the Xenopus oocyte. The expressed channel, studied by whole-cell voltage clamp, reveals characteristic selectivity for sodium as the permeant ion, voltage-dependent gating, and block by nanomolar concentrations of tetrodotoxin. Such channels are not seen in control oocytes injected with solvent only. The anticonvulsant diphenylhydantoin (DPH) inhibits the expressed channel in a voltage- and use-dependent manner, much like the effect seen in primary mammalian neuronal preparations. The inhibition of the expressed human sodium channel by DPH can be described by models previously developed to explain block of Na channels by local anesthetics. The preferential block of Na channels during depolarization helps explain the selectivity of DPH for neurons involved in seizure activity.
G F Tomaselli, E Marban, G Yellen
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 111 | 7 |
44 | 19 | |
Scanned page | 308 | 1 |
Citation downloads | 54 | 0 |
Totals | 517 | 27 |
Total Views | 544 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.