Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 6

See more details

Referenced in 6 patents
Referenced in 2 Wikipedia pages
13 readers on Mendeley
  • Article usage
  • Citations to this article (64)

Advertisement

Research Article Free access | 10.1172/JCI114061

Human mast cell carboxypeptidase. Purification and characterization.

S M Goldstein, C E Kaempfer, J T Kealey, and B U Wintroub

Department of Dermatology, University of California, San Francisco 94143.

Find articles by Goldstein, S. in: JCI | PubMed | Google Scholar

Department of Dermatology, University of California, San Francisco 94143.

Find articles by Kaempfer, C. in: JCI | PubMed | Google Scholar

Department of Dermatology, University of California, San Francisco 94143.

Find articles by Kealey, J. in: JCI | PubMed | Google Scholar

Department of Dermatology, University of California, San Francisco 94143.

Find articles by Wintroub, B. in: JCI | PubMed | Google Scholar

Published May 1, 1989 - More info

Published in Volume 83, Issue 5 on May 1, 1989
J Clin Invest. 1989;83(5):1630–1636. https://doi.org/10.1172/JCI114061.
© 1989 The American Society for Clinical Investigation
Published May 1, 1989 - Version history
View PDF
Abstract

A carboxypeptidase activity was recently identified in highly purified human lung mast cells and dispersed mast cells from skin. Using affinity chromatography with potato-tuber carboxypeptidase inhibitor as ligand, mast cell carboxypeptidase was purified to homogeneity from whole skin extracts. The purified enzyme yielded a single staining band of approximately 34,500 D on SDS-PAGE. Carboxypeptidase enzyme content estimated by determination of specific activity, was 0.5, 5, and 16 micrograms/10(6) mast cells from neonatal foreskin, adult facial skin, and adult foreskin, respectively. Human mast cell carboxypeptidase resembled bovine carboxypeptidase A with respect to hydrolysis of synthetic dipeptides and angiotensin I, but was distinguished from carboxypeptidase A in its inability to hydrolyze des-Arg9 bradykinin. The amino acid composition of human mast cell carboxypeptidase was similar to the composition of rat mast cell carboxypeptidase. The amino-terminal amino acid sequence of mast cell carboxypeptidase demonstrated 65% positional identity with human pancreatic carboxypeptidase B, but only 19% with human carboxypeptidase A. Thus, human mast cell carboxypeptidase is a novel member of the protein family of zinc-containing carboxypeptidases, in that it is functionally similar but not identical to bovine carboxypeptidase A, but has structural similarity to bovine and human pancreatic carboxypeptidase B.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1630
page 1630
icon of scanned page 1631
page 1631
icon of scanned page 1632
page 1632
icon of scanned page 1633
page 1633
icon of scanned page 1634
page 1634
icon of scanned page 1635
page 1635
icon of scanned page 1636
page 1636
Version history
  • Version 1 (May 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 6
  • Article usage
  • Citations to this article (64)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 6 patents
Referenced in 2 Wikipedia pages
13 readers on Mendeley
See more details