Recently, angiotensin II (Ang II) has been shown to cause hypertrophy of cultured quiescent rat aortic smooth muscle (RASM) cells. This observation along with the demonstration of angiotensinogen mRNA in the vessel wall has led us to postulate a role for vascular angiotensin in hypertensive blood vessel hypertrophy. To investigate further the possible molecular mechanisms, we examined the effect of Ang II on the expression of two genes known to be involved with cellular growth response. Near-confluent RASM cells were made quiescent by 48-h exposure to a defined serum-free medium. Ang II (10(-6) to 10(-11) M) resulted in an induction of the protooncogene c-myc mRNA within 30 min which persisted for 6 h. Interestingly, 6 h after the addition of Ang II, platelet-derived growth factor (PDGF) A-chain mRNA expression was elevated, peaked in 9 h, and persisted for 11 h. This was accompanied with a 15-20-fold increase in PDGF concentration in the culture medium. These effects were dose-dependent and were blocked by saralasin. Whereas the inhibition of protein synthesis by cycloheximide resulted in a stabilization of c-myc mRNA, cycloheximide abolished the elevation of the PDGF A-chain mRNA. Taken together, our data show that exposure of RASM cells to Ang II results in the sequential activation of c-myc and PDGF A-chain mRNA expressions. This sequential activation of protooncogene and growth factor gene may be an important mechanism in angiotensin-induced smooth muscle growth and hypertrophy.
A J Naftilan, R E Pratt, V J Dzau
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 190 | 0 |
54 | 23 | |
Figure | 0 | 3 |
Scanned page | 183 | 2 |
Citation downloads | 39 | 0 |
Totals | 466 | 28 |
Total Views | 494 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.