Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 2 patents
22 readers on Mendeley
  • Article usage
  • Citations to this article (147)

Advertisement

Research Article Free access | 10.1172/JCI114019

Role of reactive oxygen species in reperfusion injury of the rabbit lung.

T P Kennedy, N V Rao, C Hopkins, L Pennington, E Tolley, and J R Hoidal

Department of Medicine, University of Tennessee Center for Health Sciences, Memphis 38163.

Find articles by Kennedy, T. in: PubMed | Google Scholar

Department of Medicine, University of Tennessee Center for Health Sciences, Memphis 38163.

Find articles by Rao, N. in: PubMed | Google Scholar

Department of Medicine, University of Tennessee Center for Health Sciences, Memphis 38163.

Find articles by Hopkins, C. in: PubMed | Google Scholar

Department of Medicine, University of Tennessee Center for Health Sciences, Memphis 38163.

Find articles by Pennington, L. in: PubMed | Google Scholar

Department of Medicine, University of Tennessee Center for Health Sciences, Memphis 38163.

Find articles by Tolley, E. in: PubMed | Google Scholar

Department of Medicine, University of Tennessee Center for Health Sciences, Memphis 38163.

Find articles by Hoidal, J. in: PubMed | Google Scholar

Published April 1, 1989 - More info

Published in Volume 83, Issue 4 on April 1, 1989
J Clin Invest. 1989;83(4):1326–1335. https://doi.org/10.1172/JCI114019.
© 1989 The American Society for Clinical Investigation
Published April 1, 1989 - Version history
View PDF
Abstract

We have developed a model of reperfusion injury in Krebs buffer-perfused rabbit lungs, characterized by pulmonary vasoconstriction, microvascular injury, and marked lung edema formation. During reperfusion there was a threefold increase in lung superoxide anion (O2-) production, as measured by in vivo reduction of nitroblue tetrazolium, and a twofold increase in the release of O2- into lung perfusate, as measured by reduction of succinylated ferricytochrome c. Injury could be prevented by the xanthine oxidase inhibitor allopurinol, the O2- scavenger SOD, the hydrogen peroxide scavenger catalase, the iron chelator deferoxamine, or the thiols dimethylthiourea or N-acetylcysteine. The protective effect of SOD could be abolished by the anion channel blocker 4,4'-diisothiocyano-2,2'-stilbene disulfonic acid, indicating that SOD consumes O2- in the extracellular medium, thereby creating a concentration gradient favorable for rapid diffusion of O2- out of cells. Our results extend information about the mechanisms of reperfusion lung injury that have been assembled by studies in other organs, and offer potential strategies for improved organ preservation, for treatment of reperfusion injury after pulmonary thromboembolectomy, and for explanation and therapy of many complications of pulmonary embolism.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1326
page 1326
icon of scanned page 1327
page 1327
icon of scanned page 1328
page 1328
icon of scanned page 1329
page 1329
icon of scanned page 1330
page 1330
icon of scanned page 1331
page 1331
icon of scanned page 1332
page 1332
icon of scanned page 1333
page 1333
icon of scanned page 1334
page 1334
icon of scanned page 1335
page 1335
Version history
  • Version 1 (April 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article (147)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 2 patents
22 readers on Mendeley
See more details