The kinetics of activation of the respiratory burst oxidase in the cell-free oxidase-activating system have been explained by a three-stage mechanism in which the membrane-associated oxidase components M: (a) take up a cytosolic factor S to form a complex M.S that is (b) slowly converted in the second stage to a precatalytic species [M.S]*, which finally (c) takes up two more (possibly identical) cytosolic components, C alpha and C beta, to successively generate [M.S]*C alpha, a low-activity (i.e., high Km) oxidase, and finally [M.S]*C alpha C beta, the ordinary (i.e., low Km) oxidase (Babior, B.M., R. Kuver, and J.T. Curnutte. 1988. J. Biol. Chem. 263:1713-1718). Studies with the cell-free oxidase-activating system from normal neutrophils and from neutrophils obtained from two patients with type II (autosomal recessive cytochrome-positive) chronic granulomatous disease (CGD) have suggested that (a) the defective element in the cytosol from patient neutrophils is S; (b) in normal neutrophil cytosol, S is limiting with respect to M; and (c) C alpha and C beta interact cooperatively with the activated precursor complex [M.S]*. It was further speculated that S might be identical to the nonphosphorylated progenitor of the phosphorylated 48-kD proteins that are missing in certain forms of CGD, and that other forms of type II CGD besides the one described in this report remain to be discovered.
J T Curnutte, P J Scott, B M Babior
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 129 | 2 |
68 | 16 | |
Scanned page | 186 | 2 |
Citation downloads | 65 | 0 |
Totals | 448 | 20 |
Total Views | 468 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.