In order to determine whether differences in body fat distribution result in specific abnormalities of free fatty acid (FFA) metabolism, palmitate turnover, a measure of systemic adipose tissue lipolysis, was measured in 10 women with upper body obesity, 9 women with lower body obesity, and 8 nonobese women under overnight postabsorptive (basal), epinephrine stimulated and insulin suppressed conditions. Results: Upper body obese women had greater (P less than 0.005) basal palmitate turnover than lower body obese or nonobese women (2.8 +/- 0.2 vs. 2.1 +/- 0.2 vs. 1.8 +/- 0.2 mumol.kg lean body mass (LBM)-1.min-1, respectively), but a reduced (P less than 0.05) net lipolytic response to epinephrine (59 +/- 7 vs. 79 +/- 5 vs. 81 +/- 7 mumol palmitate/kg LBM, respectively). Both types of obesity were associated with impaired suppression of FFA turnover in response to euglycemic hyperinsulinemia compared to nonobese women (P less than 0.005). These specific differences in FFA metabolism may reflect adipocyte heterogeneity, which may in turn affect the metabolic aberrations associated with different types of obesity. These findings emphasize the need to characterize obese subjects before studies.
M D Jensen, M W Haymond, R A Rizza, P E Cryer, J M Miles
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 551 | 31 |
78 | 120 | |
Scanned page | 234 | 43 |
Citation downloads | 51 | 0 |
Totals | 914 | 194 |
Total Views | 1,108 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.