Previous studies have suggested that procollagen types I and III are the major collagenous gene products of cultured human skin fibroblasts. In this study the expression of 10 different genes, encoding the subunit polypeptides for collagen types I-VI, by human skin fibroblasts in culture was analyzed by molecular hybridizations. Northern transfer analysis demonstrated the presence of specific mRNA transcripts for collagen types I, III, IV, V, and VI, but not for type II collagen. Quantitation of the abundance of these mRNAs by slot blot hybridizations revealed that type I, III, and VI procollagens were the major collagenous gene products of skin fibroblasts in culture. The mRNAs for type IV and V collagens represented only a small percentage of the total collagenous mRNA transcripts. Further analysis by in situ hybridization demonstrated that the majority of the cultured cells coexpressed the genes for type I, III, and VI procollagen pro-alpha chains. Further in situ hybridization analyses revealed the expression of type VI collagen genes in normal human skin. These data demonstrate that human skin fibroblast cultures can be used to study the transcriptional regulation of at least nine genetically distinct procollagen genes. The data further suggest that type VI collagen, in addition to types I and III, may be a major collagenous component of human skin.
D R Olsen, J Peltonen, S Jaakkola, M L Chu, J Uitto
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 197 | 15 |
57 | 47 | |
Figure | 0 | 6 |
Scanned page | 156 | 8 |
Citation downloads | 45 | 0 |
Totals | 455 | 76 |
Total Views | 531 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.