Lipopolysaccharide (LPS) pretreatment "primes" neutrophils to release increased amounts of superoxide anion (O2-) when stimulated. We investigated the molecular basis of this enhanced activity. Comparison of kinetic parameters of the respiratory burst NADPH oxidase in unstimulated LPS-primed and control neutrophils disclosed a similar Km for NADPH and no difference was seen in the content of cytochrome b. Pertussis toxin, which inhibits some G proteins, did not prevent priming. Change in membrane potential (delta psi) was five-fold greater in LPS-primed cells and paralleled the increased O2- release. Cytofluorographic analysis indicated that the increased change in delta psi was due to the creation of a new population of active cells. Changes in the concentration of intracellular free Ca2+ ([Ca2+]i) are believed to antecede changes in delta psi. There was a consistent increment (67 +/- 8%, n = 12) in resting [Ca2+]i in cells preincubated with LPS compared with control. When stimulated, the peak [Ca2+]i was significantly higher in LPS-primed cells. Ca2+-dependent protein kinase C activity was unaltered in resting and FMLP-stimulated neutrophils preexposed to LPS. Addition to cells of the intracellular Ca2+ chelator MAPTAM before preincubation with LPS blocked the changes in [Ca2+]i and the enhanced respiratory burst that characterize LPS priming. The increased resting [Ca2+]i in LPS-primed cells may enhance stimulus-induced cellular activity by modifying a Ca2+-dependent step in signal transduction.
J R Forehand, M J Pabst, W A Phillips, R B Johnston Jr
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 261 | 7 |
59 | 20 | |
Scanned page | 394 | 7 |
Citation downloads | 64 | 0 |
Totals | 778 | 34 |
Total Views | 812 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.