Many Orientals lack the mitochondrial aldehyde dehydrogenase (ALDH2) activity responsible for the oxidation of acetaldehyde produced during ethanol metabolism. These individuals suffer the alcohol-flush reaction when they drink alcoholic beverages. The alcohol-flush reaction is the result of excessive acetaldehyde accumulation, and the unpleasant symptoms tend to reduce alcohol consumption. The subunit of this homotetrameric enzyme was sequenced and the abnormality in the inactive enzyme shown to be a substitution of lysine for glutamate at position 487. We have used the polymerase chain reaction to determine the genotypes of 24 livers from Japanese individuals. Correlating genotype with phenotype leads to the conclusion that the allele (ALDH2(2)) encoding the abnormal subunit is dominant.
D W Crabb, H J Edenberg, W F Bosron, T K Li
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 786 | 7 |
174 | 105 | |
Figure | 0 | 5 |
Scanned page | 201 | 45 |
Citation downloads | 62 | 0 |
Totals | 1,223 | 162 |
Total Views | 1,385 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.