Using different types of bacteria and a canine model simulating human septic shock, we investigated the role of endotoxin in cardiovascular dysfunction and mortality. Either Escherichia coli (a microorganism with endotoxin) or Staphylococcus aureus (a microorganism without endotoxin) were placed in an intraperitoneal clot in doses of viable or formalin-killed bacteria. Cardiovascular function of conscious animals was studied using simultaneous radionuclide heart scans and thermodilution cardiac outputs. Serial plasma endotoxin levels were measured. S. aureus produced a pattern of reversible cardiovascular dysfunction over 7-10 d that was concordant (P less than 0.01) with that of E. coli. Although this cardiovascular pattern was not altered by formalin killing (S. aureus and E. coli), formalin-killed organisms produced a lower mortality and less myocardial depression (P less than 0.01). S. aureus, compared to E. coli, produced higher postmortem concentrations of microorganisms and higher mortality (P less than 0.025). E. coli produced significant endotoxemia (P less than 0.01), though viable organisms (versus nonviable) resulted in higher endotoxin blood concentrations (P less than 0.05). Significant endotoxemia did not occur with S. aureus. Thus, in the absence of endotoxemia, S. aureus induced the same cardiovascular abnormalities of septic shock as E. coli. These findings indicate that structurally and functionally distinct microorganisms, with or without endotoxin, can activate a common pathway resulting in similar cardiovascular injury and mortality.
C Natanson, R L Danner, R J Elin, J M Hosseini, K W Peart, S M Banks, T J MacVittie, R I Walker, J E Parrillo
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 278 | 4 |
125 | 31 | |
Scanned page | 494 | 11 |
Citation downloads | 77 | 0 |
Totals | 974 | 46 |
Total Views | 1,020 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.