Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 12

See more details

Referenced in 1 policy sources
Referenced in 12 patents
Referenced in 2 clinical guideline sources
34 readers on Mendeley
  • Article usage
  • Citations to this article (305)

Advertisement

Research Article Free access | 10.1172/JCI113843

Rhinovirus upper respiratory infection increases airway hyperreactivity and late asthmatic reactions.

R F Lemanske Jr, E C Dick, C A Swenson, R F Vrtis, and W W Busse

University of Wisconsin Medical School, Department of Medicine, Madison 53792.

Find articles by Lemanske, R. in: JCI | PubMed | Google Scholar

University of Wisconsin Medical School, Department of Medicine, Madison 53792.

Find articles by Dick, E. in: JCI | PubMed | Google Scholar

University of Wisconsin Medical School, Department of Medicine, Madison 53792.

Find articles by Swenson, C. in: JCI | PubMed | Google Scholar

University of Wisconsin Medical School, Department of Medicine, Madison 53792.

Find articles by Vrtis, R. in: JCI | PubMed | Google Scholar

University of Wisconsin Medical School, Department of Medicine, Madison 53792.

Find articles by Busse, W. in: JCI | PubMed | Google Scholar

Published January 1, 1989 - More info

Published in Volume 83, Issue 1 on January 1, 1989
J Clin Invest. 1989;83(1):1–10. https://doi.org/10.1172/JCI113843.
© 1989 The American Society for Clinical Investigation
Published January 1, 1989 - Version history
View PDF
Abstract

Although viral upper respiratory infections (URIs) provoke wheezing in many asthma patients, the effect of these illnesses on the airway response to inhaled antigen is not established. The following study evaluated the effect of an experimental rhinovirus (RV) illness on airway reactivity and response to antigen in 10 adult ragweed allergic rhinitis patients. Preinfection studies included measurements of airway reactivity to histamine and ragweed antigen. Furthermore, the patients were also evaluated for late asthmatic reactions (LARs) to antigen (a 15% decrease in forced expiratory volume of the first second approximately 6 h after antigen challenge). 1 mo after baseline studies, the patients were intranasally inoculated with live RV16. All 10 patients were infected as evidenced by rhinovirus recovery in nasal washings and respiratory symptoms. Baseline FEV1 values were stable throughout the study. During the acute RV illness, there was a significant increase in airway reactivity to both histamine and ragweed antigen (P = 0.019 and 0.014, respectively). Before RV inoculation, only 1 of the 10 subjects had an LAR after antigen challenge. However, during the acute RV illness, 8 of 10 patients had an LAR (P less than 0.0085 compared with baseline); the development of LARs was independent of changes in airway reactivity and the intensity of the immediate response to antigen. Therefore, we found that not only does a RV respiratory tract illness enhance airway reactivity, but it also predisposes the allergic patient to develop LARs, which may be an important factor in virus-induced bronchial hyperresponsiveness.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1
page 1
icon of scanned page 2
page 2
icon of scanned page 3
page 3
icon of scanned page 4
page 4
icon of scanned page 5
page 5
icon of scanned page 6
page 6
icon of scanned page 7
page 7
icon of scanned page 8
page 8
icon of scanned page 9
page 9
icon of scanned page 10
page 10
Version history
  • Version 1 (January 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 12
  • Article usage
  • Citations to this article (305)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 policy sources
Referenced in 12 patents
Referenced in 2 clinical guideline sources
34 readers on Mendeley
See more details