Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Delta 4-3-oxosteroid 5 beta-reductase deficiency described in identical twins with neonatal hepatitis. A new inborn error in bile acid synthesis.
K D Setchell, … , J Heubi, W F Balistreri
K D Setchell, … , J Heubi, W F Balistreri
Published December 1, 1988
Citation Information: J Clin Invest. 1988;82(6):2148-2157. https://doi.org/10.1172/JCI113837.
View: Text | PDF
Research Article Article has an altmetric score of 3

Delta 4-3-oxosteroid 5 beta-reductase deficiency described in identical twins with neonatal hepatitis. A new inborn error in bile acid synthesis.

  • Text
  • PDF
Abstract

A new inborn error in bile acid synthesis, manifest in identical infant twins as severe intrahepatic cholestasis, is described involving the delta 4-3-oxosteroid 5 beta-reductase catalyzed conversion of the key intermediates, 7 alpha-hydroxy-4-cholesten-3-one and 7 alpha,12 alpha-dihydroxy-4-cholesten-3-one for chenodeoxycholic and cholic acid synthesis, to the respective 3 alpha-hydroxy-5 beta (H) products. This defect was detected by fast atom bombardment ionization-mass spectrometry from an elevated excretion and predominance of taurine conjugated unsaturated hydroxy-oxo-bile acids. Gas chromatography-mass spectrometry confirmed these to be 7 alpha-hydroxy-3-oxo-4-cholenoic and 7 alpha,12 alpha-dihydroxy-3-oxo-4-cholenoic acids (75-92% of total). Fasting serum bile acid concentrations were greater than 37 mumol/liter; chenodeoxycholic acid was the major bile acid, but significant amounts of allo(5 alpha-H)-bile acids (approximately 30%) were present. Biliary bile acid concentration was less than 2 mumol/liter and consisted of chenodeoxycholic, allo-chenodeoxycholic, and allo-cholic acids. These biochemical findings, which were identical in both infants, indicate a defect in bile acid synthesis involving the conversion of the delta 4-3-oxo-C27 intermediates into the corresponding 3 alpha-hydroxy-5 beta(H)-structures, a reaction that is catalyzed by a delta 4-3-oxosteroid-5 beta reductase enzyme. This defect resulted in markedly reduced primary bile acid synthesis and concomitant accumulation of delta 4-3-oxo-and allo-bile acids. These findings indicate a pathway in bile acid synthesis whereby side chain oxidation can occur despite incomplete alterations to the steroid nucleus, and lend support for an active delta 4-3-oxosteroid 5 alpha-reductase catalyzing the conversion of the delta 4-3-oxosteroid intermediates to the respective 3 alpha-hydroxy-5 alpha(H)-structures.

Authors

K D Setchell, F J Suchy, M B Welsh, L Zimmer-Nechemias, J Heubi, W F Balistreri

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 269 8
PDF 50 36
Scanned page 379 14
Citation downloads 56 0
Totals 754 58
Total Views 812
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 clinical guideline sources
25 readers on Mendeley
See more details