Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (39)

Advertisement

Research Article Free access | 10.1172/JCI113835

Elevated glucose alters eicosanoid release from porcine aortic endothelial cells.

M L Brown, J A Jakubowski, L L Leventis, and D Deykin

Department of Medicine and Biochemistry, Boston University School of Medicine, Massachusetts.

Find articles by Brown, M. in: PubMed | Google Scholar

Department of Medicine and Biochemistry, Boston University School of Medicine, Massachusetts.

Find articles by Jakubowski, J. in: PubMed | Google Scholar

Department of Medicine and Biochemistry, Boston University School of Medicine, Massachusetts.

Find articles by Leventis, L. in: PubMed | Google Scholar

Department of Medicine and Biochemistry, Boston University School of Medicine, Massachusetts.

Find articles by Deykin, D. in: PubMed | Google Scholar

Published December 1, 1988 - More info

Published in Volume 82, Issue 6 on December 1, 1988
J Clin Invest. 1988;82(6):2136–2141. https://doi.org/10.1172/JCI113835.
© 1988 The American Society for Clinical Investigation
Published December 1, 1988 - Version history
View PDF
Abstract

Cultured porcine aortic endothelial cells were conditioned through two passages to mimic euglycemic and hyperglycemic conditions (5.2 mM, normal glucose; 15.6 mM, elevated glucose). After incubation with 1 microM [14C]arachidonic acid for 24 h, the cells were stimulated with 1 microM A23187 for times up to 30 min. Uptake of [14C]arachidonic acid and its distribution among cell lipids were unaffected by the increased glucose concentration. The release of eicosanoids from labeled cells and unlabeled cells was measured by reverse-phase HPLC and by RIA, respectively. Compared with cells stimulated in the presence of normal glucose concentrations, cells stimulated in the presence of elevated glucose released 62.6% less free [14C]arachidonic acid, but released 129% more 14C-labeled 15-hydroxyeicosatetraenoic acid (HETE). Increased release of 15-HETE in the presence of elevated glucose in response to A23187, bradykinin, and thrombin was confirmed by RIA. A similar increase in 5-HETE release was observed by RIA after A23187 treatment. The release of both radiolabeled and unlabeled prostanoids was equal at both glucose concentrations. The data indicate that glucose may play an important role in the regulation of release and metabolism of arachidonic acid after agonist stimulation. In the presence of elevated glucose concentrations, such as those associated with diabetes mellitus, the extent and pattern of eicosanoid release from endothelial cells is markedly altered.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2136
page 2136
icon of scanned page 2137
page 2137
icon of scanned page 2138
page 2138
icon of scanned page 2139
page 2139
icon of scanned page 2140
page 2140
icon of scanned page 2141
page 2141
Version history
  • Version 1 (December 1, 1988): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (39)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts