Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Proteinase 3. A distinct human polymorphonuclear leukocyte proteinase that produces emphysema in hamsters.
R C Kao, … , B H Gray, J R Hoidal
R C Kao, … , B H Gray, J R Hoidal
Published December 1, 1988
Citation Information: J Clin Invest. 1988;82(6):1963-1973. https://doi.org/10.1172/JCI113816.
View: Text | PDF
Research Article Article has an altmetric score of 9

Proteinase 3. A distinct human polymorphonuclear leukocyte proteinase that produces emphysema in hamsters.

  • Text
  • PDF
Abstract

Studies were designed to explore the possibility that human polymorphonuclear leukocyte granule constituents in addition to elastase (HLE) had the potential to cause emphysema. A two-step purification of three serine proteinases was developed. Granule extract proteins were initially separated by dye-ligand affinity chromatography. Fractions eluted were divided into four pools. Hamsters were given a single intratracheal instillation of saline +/- 0.1 mg protein of each pool. While pool 2 contained HLE and cathepsin G, the most dramatic bullous emphysema developed in animals treated with pool 4. The esterase from pool 4, designated proteinase 3 (PR-3) was purified, characterized in vitro, and tested for its ability to cause emphysema. PR-3 is a neutral serine proteinase with isoenzyme forms. Its ability to degrade elastin at pH 6.5 is slightly greater than that of HLE, but it is less active than HLE at pH 7.4 or 8.9. PR-3 has weak activity against azocasein. Its ability to degrade hemoglobin is intermediate to that of HLE and cathepsin G at pH 7.4. PR-3 has no activity against chromogenic substrates specific for HLE or cathepsin G. Its pI is substantially less than HLE or cathepsin G. It is also immunologically distinct from HLE. It induces emphysema in hamsters commensurate with that of HLE. We conclude that PR-3 may be important in the pathogenesis of human emphysema.

Authors

R C Kao, N G Wehner, K M Skubitz, B H Gray, J R Hoidal

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 306 12
PDF 48 21
Figure 0 9
Scanned page 378 4
Citation downloads 44 0
Totals 776 46
Total Views 822
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 6 patents
Referenced in 3 Wikipedia pages
Referenced in 1 clinical guideline sources
54 readers on Mendeley
See more details