Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 9

See more details

Referenced in 5 patents
Referenced in 6 Wikipedia pages
12 readers on Mendeley
  • Article usage
  • Citations to this article (64)

Advertisement

Research Article Free access | 10.1172/JCI113779

Human serum amyloid A. Three hepatic mRNAs and the corresponding proteins in one person.

B Kluve-Beckerman, F E Dwulet, and M D Benson

Department of Medical Genetics, Indiana University School of Medicine, Indianapolis 46223.

Find articles by Kluve-Beckerman, B. in: JCI | PubMed | Google Scholar

Department of Medical Genetics, Indiana University School of Medicine, Indianapolis 46223.

Find articles by Dwulet, F. in: JCI | PubMed | Google Scholar

Department of Medical Genetics, Indiana University School of Medicine, Indianapolis 46223.

Find articles by Benson, M. in: JCI | PubMed | Google Scholar

Published November 1, 1988 - More info

Published in Volume 82, Issue 5 on November 1, 1988
J Clin Invest. 1988;82(5):1670–1675. https://doi.org/10.1172/JCI113779.
© 1988 The American Society for Clinical Investigation
Published November 1, 1988 - Version history
View PDF
Abstract

Serum amyloid A protein (SAA) is a major acute-phase protein in humans and most other mammals. In addition, it is the serum precursor of the major protein constituent of reactive amyloid fibrils. Sequence analyses have identified a number of polymorphic forms of human SAA and amyloid A protein (AA), but the question of the number of genes encoding SAA in the human has not been addressed. In addition, there are insufficient data to predict whether one form of SAA predisposes to amyloid fibril formation. In the present study three separate SAA proteins have been isolated from the plasma of one individual and completely sequenced. While two of the SAA forms (SAA2 alpha and SAA2 beta) differ from each other only at position 71, they differ from the most abundant form (SAA1) at seven and eight other positions, respectively. Nucleotide sequencing of cDNAs from a liver library of this individual identified all three mRNs coding for these proteins and proved that: (a) the often-reported absence of arginine at the amino terminus of SAA proteins must result from proteolytic processing of the protein; (b) the polymorphism involving histidine and arginine at position 71 is present at the DNA level and therefore is not due to an event at the translational level; (c) there are at least two genes coding for human SAA. Comparison of these data to published sequences of SAA and AA proteins may help in identifying genetically determined forms of SAA which predispose to reactive amyloid fibril formation.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1670
page 1670
icon of scanned page 1671
page 1671
icon of scanned page 1672
page 1672
icon of scanned page 1673
page 1673
icon of scanned page 1674
page 1674
icon of scanned page 1675
page 1675
Version history
  • Version 1 (November 1, 1988): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 9
  • Article usage
  • Citations to this article (64)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 5 patents
Referenced in 6 Wikipedia pages
12 readers on Mendeley
See more details