Acylation of cellular proteins with the fatty acids myristate or palmitate represents an important mechanism for the co- or posttranslational modification of proteins. Lipid A, the biologically active component of bacterial endotoxin, exerts a number of biochemical effects on responsive cell types. Evidence is presented that lipid A stimulates the synthesis and subsequent myristyl acylation of intracellular monocyte and glomerular mesangial cell proteins. Two of the myristylated monocyte proteins were identified by specific immunoprecipitation as the 33-kD IL 1 alpha and beta precursors; a similar myristylated protein was found in mesangial cells. The 17-kD secretory form of monocyte IL 1 beta did not contain covalently linked myristate. Myristyl acylation of the IL 1 precursor proteins may facilitate the processing or membrane localization of these proteins, which lack characteristic hydrophobic signal sequences. The acylated 33-kD IL 1 alpha may remain preferentially associated with the membrane in an active form, whereas limited proteolysis may convert the biologically inactive IL 1 beta precursor into the extracellular, nonacylated, active 17-kD protein.
S L Bursten, R M Locksley, J L Ryan, D H Lovett
1479 | 1480 | 1481 | 1482 | 1483 | 1484 | 1485 | 1486 | 1487 | 1488 |