Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (66)

Advertisement

Research Article Free access | 10.1172/JCI113681

Catabolic rate of low density lipoprotein is influenced by variation in the apolipoprotein B gene.

T Demant, R S Houlston, M J Caslake, J J Series, J Shepherd, C J Packard, and S E Humphries

Department of Pathological Biochemistry, Royal Infirmary, Glasgow, Scotland.

Find articles by Demant, T. in: PubMed | Google Scholar

Department of Pathological Biochemistry, Royal Infirmary, Glasgow, Scotland.

Find articles by Houlston, R. in: PubMed | Google Scholar

Department of Pathological Biochemistry, Royal Infirmary, Glasgow, Scotland.

Find articles by Caslake, M. in: PubMed | Google Scholar

Department of Pathological Biochemistry, Royal Infirmary, Glasgow, Scotland.

Find articles by Series, J. in: PubMed | Google Scholar

Department of Pathological Biochemistry, Royal Infirmary, Glasgow, Scotland.

Find articles by Shepherd, J. in: PubMed | Google Scholar

Department of Pathological Biochemistry, Royal Infirmary, Glasgow, Scotland.

Find articles by Packard, C. in: PubMed | Google Scholar

Department of Pathological Biochemistry, Royal Infirmary, Glasgow, Scotland.

Find articles by Humphries, S. in: PubMed | Google Scholar

Published September 1, 1988 - More info

Published in Volume 82, Issue 3 on September 1, 1988
J Clin Invest. 1988;82(3):797–802. https://doi.org/10.1172/JCI113681.
© 1988 The American Society for Clinical Investigation
Published September 1, 1988 - Version history
View PDF
Abstract

This study examines the potential influence of genetic variation on the metabolism of LDL. Restriction fragment length polymorphisms (RFLP) of the gene coding for apo B were identified using the endonucleases Xba I, Eco RI, and Msp I in a group of 19 subjects with moderate hyperlipidemia. There was a significant association between the Xba I polymorphism and the total fractional clearance rate (FCR) of LDL. The individuals with the X1X1 genotype had, on average, a 22% higher FCR (P less than 0.025) than those with the genotype X2X2 (X2 allele = presence of Xba I cutting site). This difference was attributable to increased clearance by the receptor-mediated pathway of LDL catabolism. In this group of subjects, there was no association of LDL kinetic parameters and RFLPs of the LDL receptor gene or the AI- CIII- AIV gene cluster. The data suggest that variation in apo B itself, presumably acting through variable binding to the LDL receptor, makes a significant contribution to the rate of catabolism of LDL.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 797
page 797
icon of scanned page 798
page 798
icon of scanned page 799
page 799
icon of scanned page 800
page 800
icon of scanned page 801
page 801
icon of scanned page 802
page 802
Version history
  • Version 1 (September 1, 1988): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (66)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts