We studied Heinz body-containing erythrocytes with three different unstable hemoglobins: Nottingham, Brockton, and unclassified. We demonstrated two classes of membrane protein defects in unstable hemoglobin-containing cells (UH-RBCs), a defect of the spectrin-depleted inside-out vesicle (UH-IOV), and a defect of spectrin (UH-spectrin) itself. The composition of UH-IOVs is the same as control with respect to quantity of ankyrin and proportion inside-out. However, UH-IOVs bind even less spectrin than IOVs derived from sickle erythrocytes (SS-IOVs), suggesting a severe functional defect in the ankyrin of UH-RBCs (UH-ankyrin). Further evidence that UH-ankyrin is abnormal is demonstrated by the virtual absence of ankyrin in isotonic membrane shells of UH-RBCs (UH-shells), and abnormal mobility and decreased binding of the 72-kD (spectrin-binding) alpha-chymotryptic fragment of UH-ankyrin (UH-72-kD) to control spectrin. All UH-RBC membranes were spectrin-deficient (60% of control). In addition, spectrin isolated from UH-RBCs (UH-spectrin) was abnormal in two respects: (a) presence of a fast-moving band on nondenaturing polyacrylamide gels of both 0 degree C and 37 degrees C extracts, and (b) decreased binding to actin in the presence of protein 4.1. UH-spectrin did exhibit normal self-association, binding to IOVs and binding to actin in the absence of protein 4.1. This pattern of normal and abnormal spectrin functions has been described for spectrin subjected to mild diamide oxidation, suggesting the role of oxidation is the pathogenesis of membrane defect(s) of erythrocytes with abnormal hemoglobins.
O S Platt, J F Falcone
Usage data is cumulative from June 2024 through June 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 115 | 6 |
40 | 12 | |
Figure | 0 | 1 |
Scanned page | 246 | 8 |
Citation downloads | 49 | 0 |
Totals | 450 | 27 |
Total Views | 477 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.