Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 2 patents
21 readers on Mendeley
  • Article usage
  • Citations to this article (65)

Advertisement

Research Article Free access | 10.1172/JCI113582

Human growth hormone gene and the highly homologous growth hormone variant gene display different splicing patterns.

N E Cooke, J Ray, M A Watson, P A Estes, B A Kuo, and S A Liebhaber

Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104.

Find articles by Cooke, N. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104.

Find articles by Ray, J. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104.

Find articles by Watson, M. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104.

Find articles by Estes, P. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104.

Find articles by Kuo, B. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104.

Find articles by Liebhaber, S. in: JCI | PubMed | Google Scholar

Published July 1, 1988 - More info

Published in Volume 82, Issue 1 on July 1, 1988
J Clin Invest. 1988;82(1):270–275. https://doi.org/10.1172/JCI113582.
© 1988 The American Society for Clinical Investigation
Published July 1, 1988 - Version history
View PDF
Abstract

Stably transfected cell lines containing the normal human growth hormone (hGH-N) and human growth hormone-variant (hGH-V) genes have been established in order to study the expression of these two highly homologous genes. Each gene was inserted into a bovine papillomavirus shuttle vector under the transcriptional control of the mouse metallothionein gene promoter and the resultant recombinants were transfected into mouse C127 cells. The transfected cells containing the hGH-N gene secrete two hGH proteins, 91% migrating at 22 kD and 9% migrating at 20 kD, the same relative proportions synthesized in vivo by the human pituitary. S1 nuclease analysis of mRNA from these cells confirms that 20 kD hGH is encoded by an alternatively spliced product of the primary hGH-N gene transcript in which the normal exon 3 splice-acceptor site is bypassed for a secondary site 15 codons within exon 3. Although the hGH-V gene is identical to the hGH-N gene for at least 15 nucleotides on either side of the normal and alternative exon 3 AG splice-acceptor sites, hGH-V synthesizes only a 22-kD protein. Reciprocal exchange of exon 3 and its flanking intron sequences between the hGH-N gene and the hGH-V gene, eliminates the synthesis of the 20-kD protein in both resultant chimeric genes. These results directly demonstrate that both the major 22-kD and the minor 20-kD forms of pituitary hGH are encoded by the alternative splicing products of a single hGH-N gene transcript. This alternative splicing is neither species nor tissue-specific and appears to be regulated by at least two separate regions remote from the AG splice-acceptor site.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 270
page 270
icon of scanned page 271
page 271
icon of scanned page 272
page 272
icon of scanned page 273
page 273
icon of scanned page 274
page 274
icon of scanned page 275
page 275
Version history
  • Version 1 (July 1, 1988): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article (65)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 2 patents
21 readers on Mendeley
See more details