To learn about adipose differentiation of precursors from postnatal adipose tissue of lean and massively obese subjects, human omental adipocyte precursor-murine renal adenocarcinoma cell (RAG) hybrids were formed by fusion with polyethylene glycol, and cultured selectively with 50 microM ouabain in hypoxanthine aminopterin thymidine (HAT) medium. Under conditions in which the parent cells did not differentiate, a number of hybrids, which were cloned, revealed morphologic and biochemical evidence of differentiation. In addition to activation of human genes within the common nucleus of the hybrids, murine cytoplasmic activators are probably also involved because heterocaryons (fused cells with two interspecific nuclei) revealed the same phenomenon. Hybrids composed of precursors from massively obese subjects disclosed more frequent and prominent differentiation. Since these hybrids, in contrast to those from the lean, recapitulate this phenomenon in subcultures, they provide the potential system for mapping the human gene(s) responsible for adipose differentiation and its exaggeration in massive obesity.
P E Le Blanc, D A Roncari, D I Hoar, A M Adachi
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 87 | 0 |
39 | 16 | |
Scanned page | 264 | 2 |
Citation downloads | 56 | 0 |
Totals | 446 | 18 |
Total Views | 464 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.