Human epidermal keratinocytes obtained from normal skin attached and spread on thrombospondin (TSP)-coated plastic dishes but failed to attach and spread on untreated plastic culture dishes or dishes coated with fibronectin or laminin. These cells produced minimal amounts of immunoreactive TSP. Keratinocytes established in culture on MCDB 153 medium and maintained for one to three passages in an undifferentiated state by continued cultivation in this low Ca2+-containing medium attached and spread on plastic dishes as well as on TSP-coated dishes. These cells also secreted significant amounts of TSP into the culture medium. When the keratinocytes were incubated for one day in MCDB 153 medium supplemented with high Ca2+ or in MEM (which also contains high Ca2+), there was decreased secretion of TSP into the culture medium concomitant with a reduction in attachment and spreading on plastic culture dishes. Proteolytic fragments of TSP were examined for stimulation of keratinocyte attachment and spreading. A 140-kd fragment produced by removal of the 25-kd heparin-binding domain had similar activity to the intact molecule while the 25-kd fragment was without effect. Further proteolytic treatment of the 140-kd fragment gave rise to a fragment consisting of 120 kd and 18-D moieties held together in disulphide linkage. This fragment did not support attachment or spreading. This study reveals that normal epidermal keratinocytes grown under conditions that maintain the undifferentiated state are able to produce TSP and utilize it as an attachment factor. When keratinocytes are grown under conditions that promote differentiation, ability to produce and utilize TSP is diminished. Since TSP is present at the dermal-epidermal junction and because TSP promotes keratinocyte attachment and spreading, this molecule may play an important role in maintaining normal growth of the basal cell layer and may also participate in reepithelialization during wound repair.
J Varani, B J Nickoloff, B L Riser, R S Mitra, K O'Rourke, V M Dixit
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 101 | 0 |
44 | 10 | |
Scanned page | 267 | 6 |
Citation downloads | 50 | 0 |
Totals | 462 | 16 |
Total Views | 478 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.