Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113482

Transcriptional and posttranscriptional regulation of tumor necrosis factor gene expression in human monocytes.

E Sariban, K Imamura, R Luebbers, and D Kufe

Laboratory of Clinical Pharmacology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115.

Find articles by Sariban, E. in: JCI | PubMed | Google Scholar

Laboratory of Clinical Pharmacology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115.

Find articles by Imamura, K. in: JCI | PubMed | Google Scholar

Laboratory of Clinical Pharmacology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115.

Find articles by Luebbers, R. in: JCI | PubMed | Google Scholar

Laboratory of Clinical Pharmacology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115.

Find articles by Kufe, D. in: JCI | PubMed | Google Scholar

Published May 1, 1988 - More info

Published in Volume 81, Issue 5 on May 1, 1988
J Clin Invest. 1988;81(5):1506–1510. https://doi.org/10.1172/JCI113482.
© 1988 The American Society for Clinical Investigation
Published May 1, 1988 - Version history
View PDF
Abstract

Regulation of tumor necrosis factor (TNF) gene expression was investigated in resting human monocytes and in 12-O-tetradecanoylphorbol-13-acetate (TPA) activated monocytes. TNF transcripts were undetectable in resting monocytes. However, in TPA-activated monocytes, TNF mRNA was first detectable by 3 h and reached maximal levels by 12 h of drug exposure. Using run-on transcription assays, the TNF gene was transcriptionally inactive in resting monocytes, but was rapidly activated after TPA exposure. The protein synthesis inhibitor, cycloheximide (CHX), had no detectable effect on levels of TNF transcripts in resting monocytes, while this agent superinduced the level of TNF mRNA by 50-fold in TPA-activated cells. TPA activated monocytes were also exposed to actinomycin D and/or CHX to determine whether transcriptional or posttranscriptional control of TNF gene expression was responsible for the induction of TNF transcripts. After 1 h of actinomycin D treatment, the amount of TNF transcripts was reduced by 75%. In contrast, no difference in TNF mRNA levels was observed in TPA-activated monocytes exposed to CHX alone or CHX in combination with actinomycin D. These findings indicated that CHX prevented the degradation of TNF mRNA by inhibiting the synthesis of a labile protein. Run-on transcription assays performed on cells exposed to either TPA or the combination of TPA and CHX further indicated that CHX treatment increased transcription of the TNF gene. Thus, TNF gene expression is controlled at the transcriptional level in resting human monocytes, while both transcriptional and posttranscriptional events regulate the level of TNF transcripts in TPA-activated cells.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1506
page 1506
icon of scanned page 1507
page 1507
icon of scanned page 1508
page 1508
icon of scanned page 1509
page 1509
icon of scanned page 1510
page 1510
Version history
  • Version 1 (May 1, 1988): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts