Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 3 patents
22 readers on Mendeley
  • Article usage
  • Citations to this article (104)

Advertisement

Research Article Free access | 10.1172/JCI113448

Xanthine oxidase produces hydrogen peroxide which contributes to reperfusion injury of ischemic, isolated, perfused rat hearts.

J M Brown, L S Terada, M A Grosso, G J Whitmann, S E Velasco, A Patt, A H Harken, and J E Repine

Department of Surgery, University of Colorado, Health Sciences Center, Denver 80262.

Find articles by Brown, J. in: JCI | PubMed | Google Scholar

Department of Surgery, University of Colorado, Health Sciences Center, Denver 80262.

Find articles by Terada, L. in: JCI | PubMed | Google Scholar

Department of Surgery, University of Colorado, Health Sciences Center, Denver 80262.

Find articles by Grosso, M. in: JCI | PubMed | Google Scholar

Department of Surgery, University of Colorado, Health Sciences Center, Denver 80262.

Find articles by Whitmann, G. in: JCI | PubMed | Google Scholar

Department of Surgery, University of Colorado, Health Sciences Center, Denver 80262.

Find articles by Velasco, S. in: JCI | PubMed | Google Scholar

Department of Surgery, University of Colorado, Health Sciences Center, Denver 80262.

Find articles by Patt, A. in: JCI | PubMed | Google Scholar

Department of Surgery, University of Colorado, Health Sciences Center, Denver 80262.

Find articles by Harken, A. in: JCI | PubMed | Google Scholar

Department of Surgery, University of Colorado, Health Sciences Center, Denver 80262.

Find articles by Repine, J. in: JCI | PubMed | Google Scholar

Published April 1, 1988 - More info

Published in Volume 81, Issue 4 on April 1, 1988
J Clin Invest. 1988;81(4):1297–1301. https://doi.org/10.1172/JCI113448.
© 1988 The American Society for Clinical Investigation
Published April 1, 1988 - Version history
View PDF
Abstract

Three lines of investigation indicated that hydrogen peroxide (H2O2) from xanthine oxidase (XO) contributes to cardiac dysfunction during reperfusion after ischemia. First, addition of dimethylthiourea (DMTU), a highly permeant O2 metabolite scavenger (but not urea) simultaneously with reperfusion improved recovery of ventricular function as assessed by ventricular developed pressure (DP), contractility (+dP/dt), and relaxation rate (-dP/dt) in isolated Krebs-Henseleit-perfused rat hearts subjected to global normothermic ischemia. Second, hearts from rats fed tungsten or treated with allopurinol had negligible XO activities (less than 0.5 mU/g wet myocardium compared with greater than 6.0 mU/g in control hearts) and increased ventricular function after ischemia and reperfusion. Third, myocardial H2O2-dependent inactivation of catalase occurred after reperfusion following ischemia, but not after ischemia without reperfusion or perfusion without ischemia. In contrast, myocardial catalase did not decrease during reperfusion of ischemic hearts treated with DMTU, tungsten, or allopurinol.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1297
page 1297
icon of scanned page 1298
page 1298
icon of scanned page 1299
page 1299
icon of scanned page 1300
page 1300
icon of scanned page 1301
page 1301
Version history
  • Version 1 (April 1, 1988): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article (104)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 3 patents
22 readers on Mendeley
See more details