"Perinatal" hypophosphatasia is the most severe form of this inborn error of metabolism, which is characterized by deficient activity of the tissue-nonspecific (liver/bone/kidney) isoenzyme of alkaline phosphatase (ALP) (TNSALP). We report that autopsy tissue from three affected subjects, which was profoundly low in ALP activity, had essentially unremarkable levels of pyridoxal-5'-phosphate (PLP), pyridoxal, and total vitamin B6 content despite markedly elevated plasma PLP levels (5,800, 14,500, and 98,500 nM; adult norm, 5-109 nM). Our findings help to explain the general absence of symptoms of vitamin B6 excess or deficiency in hypophosphatasia, and provide evidence that TNSALP acts as an ectoenzyme to regulate extracellular rather than intracellular concentrations of PLP (the cofactor form of vitamin B6) and perhaps other phosphate compounds.
M P Whyte, J D Mahuren, K N Fedde, F S Cole, E R McCabe, S P Coburn
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 312 | 9 |
61 | 13 | |
Scanned page | 223 | 2 |
Citation downloads | 45 | 0 |
Totals | 641 | 24 |
Total Views | 665 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.