Diacylglycerols (DAG) modulate secretory responses by the activation of protein kinase C. Early changes in DAG formation induced by the muscarinic receptor agonist carbachol were compared to those caused by the nutrient secretagogue glucose in pancreatic islets. Turnover rates of DAG were investigated in radiolabeling experiments, whereas changes in total mass and fatty acid composition of DAG were assessed by gas-liquid chromatography. When islet lipids were labeled to steady state in tissue culture with [3H]glycerol, carbachol induced a rapid (10 s) and sustained increase of [3H]DAG generation. In contrast, glucose stimulation failed to increase [3H]glycerol containing DAG, and this was probably due to the isotopic dilution of the label secondary to enhanced glycolysis. This was substantiated by following the transfer of 14C from glucose into DAG. Within 1 min of acute exposure of islets to D-[U-14C]-glucose at stimulatory concentrations, DAG labeling increased fivefold representing up to 2% of total glucose usage. Similar stimulation of 14C incorporation into other neutral lipids and inositol phospholipids was observed, suggesting the enhanced de novo synthesis of phosphatidic acid, the common precursor for DAG, and inositol phospholipids from glycolytic intermediates. Transfer of 14C from glucose was not stimulated by agents such as carbachol and exogenous phospholipase C that act primarily on inositol phospholipid breakdown. The total mass of islet DAG was increased by 60% after both carbachol and glucose stimulation. However, analysis of the fatty acid composition of carbachol-generated DAG revealed at the early time point (10 s) a prevalent stearoyl-arachidonoyl configuration similar to that reported for inositol phospholipids. This pattern shifted to a DAG enriched in palmitic acid at a later time point. Glucose-stimulated islets displayed a predominance of palmitic acid containing DAG, indicating increased de novo synthesis of the putative second messenger rather than its formation by inositol phospholipid hydrolysis. Indeed, steady-state labeling of these phospholipids with [3H]inositol confirmed this idea since only carbachol caused detectable inositol phospholipid hydrolysis. Thus, although protein kinase C may be activated by both carbachol and glucose, the two secretagogues generate diacylglycerols through different mechanisms.
B Peter-Riesch, M Fathi, W Schlegel, C B Wollheim
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 124 | 0 |
41 | 17 | |
Scanned page | 222 | 2 |
Citation downloads | 28 | 0 |
Totals | 415 | 19 |
Total Views | 434 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.