To study the mechanism of the diabetogenic action of ethanol, ethanol (0.75 g/kg over 30 min) and then glucose (0.5 g/kg over 5 min) were infused intravenously into six normal males. During the 4-h study, 21.8 +/- 2.1 g of ethanol was metabolized and oxidized to CO2 and H2O. Ethanol decreased total body fat oxidation by 79% and protein oxidation by 39%, and almost completely abolished the 249% rise in carbohydrate (CHO) oxidation seen in controls after glucose infusion. Ethanol decreased the basal rate of glucose appearance (GRa) by 30% and the basal rate of glucose disappearance (GRd) by 38%, potentiated glucose-stimulated insulin release by 54%, and had no effect on glucose tolerance. In hyperinsulinemic-euglycemic clamp studies, ethanol caused a 36% decrease in glucose disposal. We conclude that ethanol was a preferred fuel preventing fat, and to lesser degrees, CHO and protein, from being oxidized. It also caused acute insulin resistance which was compensated for by hypersecretion of insulin.
J J Shelmet, G A Reichard, C L Skutches, R D Hoeldtke, O E Owen, G Boden
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 391 | 73 |
80 | 162 | |
Scanned page | 290 | 56 |
Citation downloads | 43 | 0 |
Totals | 804 | 291 |
Total Views | 1,095 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.