Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (25)

Advertisement

Research Article Free access | 10.1172/JCI113425

Genetic linkage of two intragenic restriction fragment length polymorphisms with von Willebrand's disease type IIA. Evidence for a defect in the von Willebrand factor gene.

C L Verweij, R Quadt, E Briët, K Dubbeldam, G B van Ommen, and H Pannekoek

Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Department of Molecular Biology, Amsterdam, The Netherlands.

Find articles by Verweij, C. in: JCI | PubMed | Google Scholar

Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Department of Molecular Biology, Amsterdam, The Netherlands.

Find articles by Quadt, R. in: JCI | PubMed | Google Scholar

Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Department of Molecular Biology, Amsterdam, The Netherlands.

Find articles by Briët, E. in: JCI | PubMed | Google Scholar

Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Department of Molecular Biology, Amsterdam, The Netherlands.

Find articles by Dubbeldam, K. in: JCI | PubMed | Google Scholar

Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Department of Molecular Biology, Amsterdam, The Netherlands.

Find articles by van Ommen, G. in: JCI | PubMed | Google Scholar

Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Department of Molecular Biology, Amsterdam, The Netherlands.

Find articles by Pannekoek, H. in: JCI | PubMed | Google Scholar

Published April 1, 1988 - More info

Published in Volume 81, Issue 4 on April 1, 1988
J Clin Invest. 1988;81(4):1116–1121. https://doi.org/10.1172/JCI113425.
© 1988 The American Society for Clinical Investigation
Published April 1, 1988 - Version history
View PDF
Abstract

Restriction fragment length polymorphisms (RFLPs), using the enzymes Bgl II and Xba I in conjunction with human von Willebrand factor (vWF) cDNA probes, have been described previously. In the present study we demonstrate the localization of both genetic markers within the vWF gene. The RFLPs were used to study the segregation of alleles associated with von Willebrand's disease (vWD) type IIA in a comprehensive, affected family. Individuals of this family were tested for their bleeding time and their plasma was analyzed for vWF antigen concentration and vWF ristocetin-cofactor activity. Based on these data, the affected members were diagnosed as vWD type-IIA patients; this conclusion was confirmed by the analysis of the multimeric vWF pattern of some of the patients. It was demonstrated that both RFLPs are completely linked with the vWD type-IIA trait. From this finding, we conclude that the defect that causes the vWD type IIA is most likely due to a mutation in the vWF gene and not to a mutation in a gene involved in posttranslational processing of the vWF protein.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1116
page 1116
icon of scanned page 1117
page 1117
icon of scanned page 1118
page 1118
icon of scanned page 1119
page 1119
icon of scanned page 1120
page 1120
icon of scanned page 1121
page 1121
Version history
  • Version 1 (April 1, 1988): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (25)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts