Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Modulation of Na-K-ATPase activity in the mouse medullary thick ascending limb of Henle. Effects of mineralocorticoids and sodium.
E B Grossman, S C Hebert
E B Grossman, S C Hebert
Published March 1, 1988
Citation Information: J Clin Invest. 1988;81(3):885-892. https://doi.org/10.1172/JCI113399.
View: Text | PDF
Research Article

Modulation of Na-K-ATPase activity in the mouse medullary thick ascending limb of Henle. Effects of mineralocorticoids and sodium.

  • Text
  • PDF
Abstract

This study investigates the effect of variations in mineralocorticoid as well as cell sodium delivery and uptake on Na-K-ATPase activity in the mouse medullary thick ascending limb of Henle (mTALH). Pharmacologic doses of the mineralocorticoid deoxycorticosterone acetate (DOCA) resulted in a 28% increase of Na-K-ATPase activity. Furosemide-induced inhibition of sodium uptake by the mTALH cell also resulted in Na-K-ATPase activity reduction (45%). Sodium deprivation did not cause a clear change in enzyme activity, either at 3 d or 2 wk, likely reflecting the result of the opposing influences of decreased sodium delivery and increased endogenous aldosterone. Finally, the behavior of Na-K-ATPase activity at 3 d of sodium deprivation in the mTALH contrasted with a 60% increase in activity observed in the cortical collecting tubule, a nephron segment known to be responsive to mineralocorticoid, and this heterogeneity of response may suggest an important role for the mTALH in maintaining salt homeostasis.

Authors

E B Grossman, S C Hebert

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 69 0
PDF 47 10
Scanned page 264 2
Citation downloads 49 0
Totals 429 12
Total Views 441
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts