Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Metabolic fate of arachidonic acid in hepatocytes of continuously endotoxemic rats.
E B Rodriguez de Turco, J A Spitzer
E B Rodriguez de Turco, J A Spitzer
Published March 1, 1988
Citation Information: J Clin Invest. 1988;81(3):700-709. https://doi.org/10.1172/JCI113375.
View: Text | PDF
Research Article

Metabolic fate of arachidonic acid in hepatocytes of continuously endotoxemic rats.

  • Text
  • PDF
Abstract

The present experiments were designed to characterize the kinetics of [1-14C]arachidonic acid (AA) metabolism as a function of time in hepatocytes obtained from rats infused continuously for 30 h with a nonlethal dose of Escherichia coli endotoxin (ET). Chronic endotoxemia greatly reduces the ability of hepatocytes to utilize [1-14C]AA, which is reflected from the earliest times of incubation in very low labeling of intermediates in the biosynthetic pathways of glycerolipids (phosphatidic acid and diacylglycerol) and slower removal of [1-14C]AA from the free fatty acid pool as compared with saline-infused rats. At later times of incubation, the labeling of phospholipids (especially phosphatidylethanolamine and phosphatidylinositol [PI]), but not of triacylglycerides is decreased. Analysis of fatty acid composition of individual phospholipids from cells of ET-infused rats reveals that the content of AA is significantly reduced only in PI. Hence an impairment in activation/acylation enzymatic mechanisms could affect the turnover of metabolically active phospholipid pools, i.e., PI, involved in signal transmission processes, and result in increased availability of 20:4 for eicosanoid synthesis, contributing to cellular metabolic perturbations in endotoxicosis.

Authors

E B Rodriguez de Turco, J A Spitzer

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 146 0
PDF 42 15
Scanned page 372 3
Citation downloads 50 0
Totals 610 18
Total Views 628
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts