We have investigated the effects of the monoclonal antibodies against the cell surface molecule Mac-1 on C3bi-mediated rosetting and IgG-mediated rosetting and phagocytosis by human peripheral blood monocytes. Highly purified M1/70 F(ab')2, used in the fluid phase, inhibited both monocyte functions. Half-maximal C3bi rosette inhibition occurred at a concentration of 2 nM F(ab')2 M1/70. An equivalent decrease in IgG-mediated rosetting required 10 nM M1/70 F(ab')2, and 50% inhibition of IgG-mediated phagocytosis required 7 nM antibody. Mo-1 F(ab')2 inhibited EC3bi binding with an ID50 of 0.3 nM, whereas 50% decrease in IgG-mediated rosetting required 70 nM of this antibody. OKM1 did not inhibit rosettes of sheep erythrocytes opsonized with IgG antibody (EA) at all. F(ab')2 M1/70 did not affect the binding of monomeric human IgG to monocytes, but did substantially decrease the binding of IgG aggregates. Half-maximal inhibition of aggregated IgG binding at 0 degrees C occurred at 8 nM F(ab')2 M1/70, very close to the concentration that caused equivalent inhibition of IgG-mediated phagocytosis. Aggregated IgG inhibited the binding of radiolabeled M1/70 to monocytes by approximately 40%, suggesting that some, but not all Mac-1 molecules were associated with IgG receptors under these conditions. When cells were allowed to adhere to surfaces coated with M1/70 or Mo-1 F(ab')2, C3bi-mediated rosetting was inhibited, but IgG mediated-phagocytosis was unaffected. Moreover, the dose response of inhibition of phagocytosis by fluid-phase F(ab')2, of anti-Mac-1 monoclonals was similar on monocytes adherent to albumin-coated and antibody-coated surfaces. Kinetic experiments showed that even prolonged incubation of monocytes on M1/70 coated surfaces did not lead to inhibition of EA binding nor did these incubations alter the dose response for inhibition of EA binding by fluid-phase M1/70 F(ab')2. This suggested that not all molecules recognized by M1/70 are freely mobile in the plasma membrane. Indeed, only approximately 60% of 125I-M1/70-biding sites were lost even after 4 h when monocytes were adherent to M1/70-coated surfaces. We conclude that some anti-Mac-1 antibodies can inhibit EA binding because of their epitope specificity, independent of any direct interaction with monocyte Fc receptors. This interference with IgG-Fc receptor-mediated binding and ingestion apparently occurs because of antibody binding to a subpopulation of Mac-1 molecules which are associated with IgG Fc receptors and remain on the apical membrane of monocytes adherent to anti-Mac-1-coated surfaces. We suggest that there may be two functionally distinct molecules on human monocytes recognized by M1/70 and Mo-1 that can be distinguished by their mobility in the plane of the monocyte membrane. The more mobile form of Mac-1 is involved in C3bi rosettes, and does not affect IgG-mediated phagocytosis. The other antigen recognized by M1/70 does not diffuse within the plane of the membrane; ligation of the latter molecule by antibody is associated with inhibition of IgG-mediated phagocytosis.
E J Brown, J F Bohnsack, H D Gresham
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 221 | 2 |
52 | 23 | |
Scanned page | 387 | 7 |
Citation downloads | 55 | 0 |
Totals | 715 | 32 |
Total Views | 747 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.