Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (50)

Advertisement

Research Article Free access | 10.1172/JCI113294

KCl co-transport across the basolateral membrane of rabbit renal proximal straight tubules.

S Sasaki, K Ishibashi, N Yoshiyama, and T Shiigai

Department of Internal Medicine, Tokyo Medical and Dental University, Japan.

Find articles by Sasaki, S. in: PubMed | Google Scholar

Department of Internal Medicine, Tokyo Medical and Dental University, Japan.

Find articles by Ishibashi, K. in: PubMed | Google Scholar

Department of Internal Medicine, Tokyo Medical and Dental University, Japan.

Find articles by Yoshiyama, N. in: PubMed | Google Scholar

Department of Internal Medicine, Tokyo Medical and Dental University, Japan.

Find articles by Shiigai, T. in: PubMed | Google Scholar

Published January 1, 1988 - More info

Published in Volume 81, Issue 1 on January 1, 1988
J Clin Invest. 1988;81(1):194–199. https://doi.org/10.1172/JCI113294.
© 1988 The American Society for Clinical Investigation
Published January 1, 1988 - Version history
View PDF
Abstract

Mammalian renal proximal tubules reabsorb large amounts of chloride. Mechanisms of the transcellular chloride transport are poorly understood. To determine whether KCl co-transport exists in the basolateral membrane of mammalian renal proximal tubule, isolated rabbit proximal straight tubules (S2 segment) were perfused in vitro, and intracellular activities of potassium and chloride (aKi, aCli) were measured by double-barreled ion-selective microelectrodes. aCli did not change when basolateral membrane voltage was altered by application of a direct current through perfusion pipette. aCli changes in response to bath chloride elimination were not affected by current application as well, indicating that the basolateral chloride transport is electroneutral. An increase in potassium concentration of the bath fluid from 5 to 20 mM reversibly increased aCli by 10 mM. This response of aCli to a change in the bath potassium concentration was also observed when luminal chloride was removed, or ambient sodium was totally removed. aKi significantly decreased by 5 mM when chloride was removed from the bath. These data demonstrate the existence of an electroneutral Na+-independent KCl co-transport in the basolateral membrane of the rabbit proximal tubule. Calculated electrochemical driving force was favorable for the movement of KCl from the cell to the peritubular fluid.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 194
page 194
icon of scanned page 195
page 195
icon of scanned page 196
page 196
icon of scanned page 197
page 197
icon of scanned page 198
page 198
icon of scanned page 199
page 199
Version history
  • Version 1 (January 1, 1988): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (50)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts