Under some conditions, mononuclear phagocytes spontaneously synthesize and release fibronectin, an extracellular matrix glycoprotein with versatile effects on cell-matrix interactions. To gain insight into the processes that modulate the level of fibronectin secretion by these cells, we used monocytes, in vitro matured monocytes and alveolar macrophages as models to compare fibronectin mRNA levels and fibronectin secretion in a variety of circumstances. Using Northern analysis and dot-blot analysis with a 32P-labeled human fibronectin cDNA probe, we evaluated steady-state mRNA levels and a human fibronectin-specific ELISA was used to evaluate fibronectin secretion. In all cases the amounts of fibronectin secreted paralleled fibronectin mRNA levels. Specifically (a) when fibronectin mRNA was undetectable, as in the case of normal blood monocytes, no fibronectin was secreted, but whenever fibronectin mRNA was present, as in normal alveolar macrophages, fibronectin was secreted by the cells; (b) as monocytes matured into macrophages in vitro, the cells began to express fibronectin mRNA and the cells secreted fibronectin; (c) when alveolar macrophages were activated with surface stimuli such as lipopolysaccharide (LPS) or immune complexes, fibronectin mRNA levels decreased and in parallel, the cells secreted less fibronectin; (d) in idiopathic pulmonary fibrosis (IPF), alveolar macrophages contained severalfold more fibronectin mRNA transcripts that normal and the cells spontaneously secreted severalfold more fibronectin than normal; and (e) when IPF alveolar macrophages were placed in culture the fibronectin mRNA levels in the cells decreased with time, and concurrently the amounts of fibronectin produced per unit time continually decreased. The observation of a strict concordance of fibronectin mRNA levels and fibronectin release by mononuclear phagocytes suggests that, at least in many circumstances, fibronectin secretion by mononuclear phagocytes is controlled by steady-state levels of fibronectin mRNA.
K Yamauchi, Y Martinet, R G Crystal
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 161 | 1 |
49 | 11 | |
Figure | 0 | 3 |
Scanned page | 238 | 3 |
Citation downloads | 43 | 0 |
Totals | 491 | 18 |
Total Views | 509 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.