Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Determination of Krebs cycle metabolic carbon exchange in vivo and its use to estimate the individual contributions of gluconeogenesis and glycogenolysis to overall glucose output in man.
A Consoli, … , J Miles, J Gerich
A Consoli, … , J Miles, J Gerich
Published November 1, 1987
Citation Information: J Clin Invest. 1987;80(5):1303-1310. https://doi.org/10.1172/JCI113206.
View: Text | PDF
Research Article

Determination of Krebs cycle metabolic carbon exchange in vivo and its use to estimate the individual contributions of gluconeogenesis and glycogenolysis to overall glucose output in man.

  • Text
  • PDF
Abstract

Current isotopic approaches underestimate gluconeogenesis in vivo because of Krebs cycle carbon exchange and the inability to measure intramitochondrial precursor specific activity. We therefore applied a new isotopic approach that theoretically overcomes these limitations and permits quantification of Krebs cycle carbon exchange and the individual contributions of gluconeogenesis and glycogenolysis to overall glucose output. [6-3H]Glucose was infused to measure overall glucose output; [2-14C]acetate was infused to trace phosphoenolpyruvate gluconeogenesis and to calculate Krebs cycle carbon exchange as proposed by Katz. Plasma [14C]3-OH-butyrate specific activity was used to estimate intramitochondrial acetyl coenzyme A (CoA) specific activity, and finally the ratio between plasma glucose 14C-specific activity and the calculated intracellular phosphoenolpyruvate 14C-specific activity was used to determine the relative contributions of gluconeogenesis and glycogenolysis to overall glucose output. Using this approach, acetyl CoA was found to enter the Krebs cycle at twice (postabsorptive subjects) and three times (2 1/2-d fasted subjects) the rate of pyruvate, respectively. Gluconeogenesis in postabsorptive subjects (3.36 +/- 0.20 mumol/kg per min) accounted for 28 +/- 2% of overall glucose output and increased twofold in subjects fasted for 2 1/2-d (P less than 0.01), accounting for greater than 97% of overall glucose output. Glycogenolysis in postabsorptive subjects averaged 8.96 +/- 0.40 mumol/kg per min and decreased to 0.34 +/- 0.08 mumol/kg per min (P less than 0.01) after a 2 1/2-d fast. Since these results agree well with previously reported values for gluconeogenesis and glycogenolysis based on determinations of splanchnic substrate balance and glycogen content of serial liver biopsies, we conclude that the isotopic approach applied herein provides an accurate, noninvasive measurement of gluconeogenesis and glycogenolysis in vivo.

Authors

A Consoli, F Kennedy, J Miles, J Gerich

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 290 8
PDF 58 24
Scanned page 276 1
Citation downloads 55 0
Totals 679 33
Total Views 712
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts