We describe a model to study the effects of polymorphonuclear leukocyte (PMN) transmigration on the intestinal epithelial barrier. Human PMN were induced to transmigrate across high resistance monolayers of a cultured human intestinal epithelial cell line (T84 cells) by chemotactic gradients produced by formyl methionyl leucyl phenylalanine (FMLP). With maximal transmigration monolayer resistance decreased by 48 +/- 12.6% in 15 min and by 83 +/- 1.6% in 60 min. This response was dependent on the size of the FMLP gradient and the density of PMN transmigration. The decrease in resistance correlated with number of PMN migrating across monolayers, and was accompanied by increases in flux of paracellular tracers. Macromolecular tracer studies localized the leak sites to foci at which PMN impaled the epithelium. Removal of the chemotactic gradient led to restoration of baseline resistance within 18 h. PMN transmigration across intestinal epithelial monolayers occurs via intercellular occluding junctions and may be associated with a reversible increase in epithelial permeability.
S Nash, J Stafford, J L Madara
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 245 | 13 |
41 | 21 | |
Figure | 0 | 1 |
Scanned page | 359 | 13 |
Citation downloads | 61 | 0 |
Totals | 706 | 48 |
Total Views | 754 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.