Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Unusually large von Willebrand factor multimers increase adhesion of sickle erythrocytes to human endothelial cells under controlled flow.
T M Wick, … , D A Sears, L V McIntire
T M Wick, … , D A Sears, L V McIntire
Published September 1, 1987
Citation Information: J Clin Invest. 1987;80(3):905-910. https://doi.org/10.1172/JCI113151.
View: Text | PDF
Research Article Article has an altmetric score of 6

Unusually large von Willebrand factor multimers increase adhesion of sickle erythrocytes to human endothelial cells under controlled flow.

  • Text
  • PDF
Abstract

The interactions of normal erythrocytes and erythrocytes from patients having hemoglobin S hemoglobinopathies with normal human endothelial cells (EC) were investigated under flow conditions. When EC supernatant, containing 2.8-11.0 U/dl of von Willebrand factor (vWF) antigen and vWF multimeric forms larger than those present in normal plasma, was the red blood cell (RBC)-suspending medium instead of serum-free medium (SFM), the adhesion of sickle RBC, but not normal RBC, to endothelial cells was greatly increased (range of enhancement of sickle RBC adhesion, 2- to 27-fold). Adhesion of sickle RBC to endothelial cells was reduced to near serum-free levels when EC supernatant was immunologically depleted of vWF forms. Sickle RBC suspended in SFM containing 200 U/dl of purified vWF multimers of the type found in normal human plasma or 300 micrograms/ml human fibronectin were only slightly more adhesive to endothelial cells than sickle RBC suspended in SFM alone. These data indicate that unusually large vWF multimers produced by endothelial cells are potent mediators of the adhesion of sickle erythrocytes to endothelial cells. Vaso-occlusive crises in sickle cell anemia may be caused, at least in part, by adhesive interactions between the abnormal surfaces of sickle RBC and the endothelium after the release of unusually large vWF multimeric forms from stimulated or damaged endothelial cells.

Authors

T M Wick, J L Moake, M M Udden, S G Eskin, D A Sears, L V McIntire

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 224 5
PDF 53 17
Figure 0 1
Scanned page 228 1
Citation downloads 48 0
Totals 553 24
Total Views 577
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 6 patents
28 readers on Mendeley
See more details