Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 9

See more details

Referenced in 17 patents
7 readers on Mendeley
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113124

In vitro and in vivo protective effect of atriopeptin III on ischemic acute renal failure.

M Nakamoto, J I Shapiro, P F Shanley, L Chan, and R W Schrier

Find articles by Nakamoto, M. in: PubMed | Google Scholar

Find articles by Shapiro, J. in: PubMed | Google Scholar

Find articles by Shanley, P. in: PubMed | Google Scholar

Find articles by Chan, L. in: PubMed | Google Scholar

Find articles by Schrier, R. in: PubMed | Google Scholar

Published September 1, 1987 - More info

Published in Volume 80, Issue 3 on September 1, 1987
J Clin Invest. 1987;80(3):698–705. https://doi.org/10.1172/JCI113124.
© 1987 The American Society for Clinical Investigation
Published September 1, 1987 - Version history
View PDF
Abstract

The effect of atriopeptin III (AP-III) on ameliorate ischemic acute renal failure was first examined in the isolated perfused kidney. Isolated rat kidneys were clamped for 1 h and reperfused for 30 min without therapy and then perfused with either 0 (control) or 100 micrograms/dl AP-III. In this system AP-III significantly improved renal plasma flow (39.6 +/- 2.4 vs. 32.2 +/- 2.1 ml/min per g; P less than 0.05) inulin clearance (182.6 +/- 49.2 vs. 24.6 +/- 6.2 microliters/min per g; P less than 0.05), urine flow (52.9 +/- 12.1 vs. 7.1 +/- 0.8 microliters/min per g, P less than 0.01), and net tubular sodium reabsorption (21.2 +/- 6.6 vs. 2.9 +/- 0.9 mumol/min per g, P less than 0.05) as compared with control. A second series of in vivo studies experiments were performed using 1 h of bilateral renal artery clamping followed by an intravenous infusion of either saline alone (control) or AP-III (0.20 microgram/kg per min) for 60 min. The results demonstrated that inulin clearance (244.4 +/- 25.1 vs. 15.8 +/- 8.2 microliters/min per 100 g; P less than 0.01), urine flow (23.1 +/- 5.9 vs. 1.1 +/- 0.5 microliters/min per 100 g; P less than 0.01), and net tubular sodium reabsorption (38.9 +/- 4.7 vs. 4.3 +/- 1.6 mumol/min per 100 g; P less than 0.01) were significantly higher in AP-III-treated rats than controls during the hour of AP-III infusion. In 1 h posttreatment study this significant protective effect of AP-III was documented to persist. In more chronic studies animals treated acutely with AP-III had lower serum creatinine concentration at 24 h (1.8 +/- 0.3 vs. 3.3 +/- 0.4 mg/dl; P less than 0.01) and 48 (1.0 +/- 0.2 vs. 2.4 +/- 4.0 mg/dl; P less than 0.01) after the 60 min of ischemia than controls. Renal adenosine triphosphate regeneration as assessed by P-31 nuclear magnetic resonance during reflow was also significantly improved in AP-III-treated animals at 1 h (3.03 +/- 0.30 vs. 1.45 +/- 0.40 mumol/g dry wt; P less than 0.05) and 2 h (3.98 +/- 0.46 vs. 1.80 +/- 0.05 mumol/g dry wt; P less than 0.01) or reflow as compared with control rats. Thus, AP-III significantly ameliorates ischemic acute renal failure both in vitro and in vivo in the rat.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 698
page 698
icon of scanned page 699
page 699
icon of scanned page 700
page 700
icon of scanned page 701
page 701
icon of scanned page 702
page 702
icon of scanned page 703
page 703
icon of scanned page 704
page 704
icon of scanned page 705
page 705
Version history
  • Version 1 (September 1, 1987): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 9
  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 17 patents
7 readers on Mendeley
See more details