Advertisement
Research Article Free access | 10.1172/JCI113066
Find articles by Hoppel, C. in: JCI | PubMed | Google Scholar
Find articles by Kerr, D. in: JCI | PubMed | Google Scholar
Find articles by Dahms, B. in: JCI | PubMed | Google Scholar
Find articles by Roessmann, U. in: JCI | PubMed | Google Scholar
Published July 1, 1987 - More info
A mitochondrial defect was investigated in an infant with fatal congenital lactic acidosis (3-14 mM), high lactate-to-pyruvate ratio, hypotonia, and cardiomyopathy. His sister had died with a similar disorder. Resting oxygen consumption was 150% of controls. Pathological findings included increased numbers of skeletal muscle mitochondria (many with proliferated, concentric cristae), cardiomegaly, fatty infiltration of the viscera, and spongy encephalopathy. Mitochondria from liver and muscle biopsies oxidized NADH-linked substrates at rates 20-50% of controls, whereas succinate oxidation by muscle mitochondria was increased. Mitochondrial NADH dehydrogenase activity (complex I, assayed as rotenone-sensitive NADH oxidase, NADH-duroquinone reductase, and NADH-cytochrome c reductase) was 0-10% of controls, and NADH-ferricyanide reductase activity was 25-50% of controls in the mitochondria and in skin fibroblasts. Activities of other electron transport complexes and related enzymes were normal. Familial deficiency of a component of mitochondrial NADH dehydrogenase (complex I) proximal to the rotenone-sensitive site thus accounts for this disorder.
Images.