Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (126)

Advertisement

Research Article Free access | 10.1172/JCI112953

Short-chain acyl-coenzyme A dehydrogenase deficiency. Clinical and biochemical studies in two patients.

B A Amendt, C Greene, L Sweetman, J Cloherty, V Shih, A Moon, L Teel, and W J Rhead

Find articles by Amendt, B. in: PubMed | Google Scholar

Find articles by Greene, C. in: PubMed | Google Scholar

Find articles by Sweetman, L. in: PubMed | Google Scholar

Find articles by Cloherty, J. in: PubMed | Google Scholar

Find articles by Shih, V. in: PubMed | Google Scholar

Find articles by Moon, A. in: PubMed | Google Scholar

Find articles by Teel, L. in: PubMed | Google Scholar

Find articles by Rhead, W. in: PubMed | Google Scholar

Published May 1, 1987 - More info

Published in Volume 79, Issue 5 on May 1, 1987
J Clin Invest. 1987;79(5):1303–1309. https://doi.org/10.1172/JCI112953.
© 1987 The American Society for Clinical Investigation
Published May 1, 1987 - Version history
View PDF
Abstract

We describe two patients with short-chain acyl-coenzyme A (CoA) dehydrogenase (SCADH) deficiency. Neonate I excreted large amounts of ethylmalonate and methylsuccinate; ethylmalonate excretion increased after a medium-chain triglyceride load. Neonate II died postnatally and excreted ethylmalonate, butyrate, 3-hydroxybutyrate, adipate, and lactate. Both neonates' fibroblasts catabolized [1-14C]butyrate poorly (29-64% of control). Neonate I had moderately decreased [1-14C]octanoate catabolism (43-60% of control), while neonate II oxidized this substrate normally; both catabolized radiolabeled palmitate, succinate, and/or leucine normally. Cell sonicates from neonates I and II dehydrogenated [2,3-3H]butyryl-CoA poorly (41 and 53% of control) and [2,3-3H]octanoyl-CoA more effectively (59 and 95% of control). Mitochondrial acyl-CoA dehydrogenase (ADH) activities with butyryl- and octanoyl-CoAs were 37 and 56% of control in neonate I, and 47 and 81% of control in neonate II, respectively. Monospecific medium-chain ADH (MCADH) antisera inhibited MCADH activity towards both butyryl- and octanoyl-CoAs, revealing SCADH activities to be 1 and 11% of control for neonates I and II, respectively. Fibroblast SCADH and MCADH activities were normal in an adult female with muscular SCADH deficiency.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1303
page 1303
icon of scanned page 1304
page 1304
icon of scanned page 1305
page 1305
icon of scanned page 1306
page 1306
icon of scanned page 1307
page 1307
icon of scanned page 1308
page 1308
icon of scanned page 1309
page 1309
Version history
  • Version 1 (May 1, 1987): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (126)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts