Suppression and/or cytotoxicity are believed to play an important role in the defense against Epstein-Barr virus (EBV) infection. To analyze the role of suppressor T cells in relation to EBV, we sought to clone and study these T cells. Analysis of 152 T cell clones derived from the peripheral blood of two patients with acute EBV-induced infectious mononucleosis (IM) yielded 11 highly suppressive clones that had no cytotoxic activity for the natural killer sensitive K562 cell line, an autologous EBV-infected cell line, or an allogeneic EBV-infected B cell line. Four of six suppressor T cell clones also profoundly inhibited EBV-induced immunoglobulin production, and five of five clones delayed the outgrowth of immortalized cells. These results indicate that during acute IM, suppressor T cells capable of inhibiting B cell activation in the absence of cytotoxicity can be identified, and may play a key role in the control of EBV infection.
F Wang, R M Blaese, K C Zoon, G Tosato
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 104 | 5 |
53 | 11 | |
Scanned page | 282 | 4 |
Citation downloads | 60 | 0 |
Totals | 499 | 20 |
Total Views | 519 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.