These studies were designed to determine whether the insulin resistance of fasting extends to its antilipolytic effects and whether fasting enhances the lipolytic effects of adrenergic stimulation independent of changes in plasma hormone and substrate concentrations. Palmitate flux was determined isotopically ([1-14C]palmitate) before and during epinephrine infusion in normal volunteers after a 14-h (day 1) and an 84-h (day 4) fast. Using a pancreatic clamp, constant plasma hormone and glucose concentrations were achieved on both study days in seven subjects. Six subjects were infused with saline and served as controls. During the pancreatic clamp, palmitate flux was greater (P less than 0.01) on day 4 than day 1, despite similar plasma insulin, glucagon, growth hormone, cortisol, epinephrine, norepinephrine, and glucose concentrations. The lipolytic response to epinephrine was greater (P less than 0.05) on day 4 than day 1 in both groups of subjects. In conclusion, lipolysis during fasting is less completely suppressed by insulin and more readily stimulated by epinephrine.
M D Jensen, M W Haymond, J E Gerich, P E Cryer, J M Miles
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 371 | 36 |
74 | 237 | |
Scanned page | 252 | 64 |
Citation downloads | 42 | 0 |
Totals | 739 | 337 |
Total Views | 1,076 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.