In this study, carried out in the rat and hamster, the receptor-dependent low density lipoprotein (LDL) transport process in each organ was characterized in terms of its maximal uptake rate (Jm) and Michaelis constant (Km), while the rate of receptor-independent uptake was defined in terms of its proportionality constant (P). The highest Jm values of 50-126 micrograms/h per g were found in the liver and endocrine glands in both species and receptor-dependent uptake also was detected in other organs like spleen, kidney, and intestine. The Km values were essentially the same in all of the organs and equaled approximately 90 mg/dl in both species. The receptor-independent uptake constants also were similar in the two species and were highest in the spleen, liver, and intestine. From these values for Jm, Km, and P, it was possible to construct theoretical curves that predict the plasma LDL-cholesterol concentration and fractional catabolic rate given any alteration in LDL-cholesterol production or the magnitude of receptor-dependent LDL transport in any organ of the rat or hamster.
D K Spady, J B Meddings, J M Dietschy
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 124 | 2 |
63 | 25 | |
Scanned page | 262 | 1 |
Citation downloads | 52 | 0 |
Totals | 501 | 28 |
Total Views | 529 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.