A multitracer stable isotope study of lysine kinetics was carried out in fasted adult female volunteers to determine whether a multicompartmental model that partitions protein synthesis and breakdown into at least two types of tissue components can be constructed from plasma and breath data. Five female subjects, maintained on formula diets, received L-[13C1]lysine (27 mumol/kg) as an i.v. bolus and L-[15N2]lysine (27 mumol/kg) as an oral bolus 4 h postprandially. Plasma and breath samples were collected for 6 h. On an alternate day, subjects received NaH13CO3 (10 mumol/kg) as an i.v. bolus and breath samples were collected for 6 h. Plasma tracer lysine levels were determined by gas chromatography-mass spectrometry isotope ratiometry, and breath 13CO2 levels were measured by mass spectrometric gas isotope ratiometry. The tracer data could be fitted to a mammillary multicompartmental model that consisted of a lysine central compartment and slow- and fast-exchanging peripheral compartments containing 37, 38, and 324 mumol/kg, respectively. The rates of lysine oxidation, incorporation into protein, and release by protein breakdown were 21, 35, and 56 mmol/kg/h, respectively, in the fast-exchanging compartment, whereas the rates of protein synthesis and breakdown in the slow compartment were both 53 mmol/kg/min. These values corresponded to a whole-body lysine flux of 106 mmol/kg/h. The kinetic parameters were in excellent agreement with reported values obtained by constant-infusion methods. The measurements indicated that it will be possible to detect changes in amino acid pool sizes and protein synthesis and breakdown associated with the mobilization of protein stores from plasma and breath measurements in multitracer stable isotope experiments.
C S Irving, M R Thomas, E W Malphus, L Marks, W W Wong, T W Boutton, P D Klein
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 88 | 1 |
42 | 27 | |
Scanned page | 425 | 12 |
Citation downloads | 50 | 0 |
Totals | 605 | 40 |
Total Views | 645 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.