Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 5 patents
54 readers on Mendeley
  • Article usage
  • Citations to this article (234)

Advertisement

Research Article Free access | 10.1172/JCI112389

Chronic hyperglycemia is associated with impaired glucose influence on insulin secretion. A study in normal rats using chronic in vivo glucose infusions.

J L Leahy, H E Cooper, D A Deal, and G C Weir

Find articles by Leahy, J. in: PubMed | Google Scholar

Find articles by Cooper, H. in: PubMed | Google Scholar

Find articles by Deal, D. in: PubMed | Google Scholar

Find articles by Weir, G. in: PubMed | Google Scholar

Published March 1, 1986 - More info

Published in Volume 77, Issue 3 on March 1, 1986
J Clin Invest. 1986;77(3):908–915. https://doi.org/10.1172/JCI112389.
© 1986 The American Society for Clinical Investigation
Published March 1, 1986 - Version history
View PDF
Abstract

We have proposed that chronic hyperglycemia alters the ability of glucose to modulate insulin secretion, and have now examined the effects of different levels of hyperglycemia on B cell function in normal rats using chronic glucose infusions. Rats weighing 220-300 g were infused with 0.45% NaCl or 20, 30, 35, or 50% glucose at 2 ml/h for 48 h, which raised the plasma glucose by 18 mg/dl in the 30% rats, 37 mg/dl in the 35% rats, and 224 mg/dl in the 50% group. Insulin secretion was then examined using the in vitro isolated perfused pancreas. Glucose-induced insulin secretion remained intact in the normoglycemic 20% glucose rats and it was potentiated in the mildly hyperglycemic 30% glucose rats. However, with even greater hyperglycemia in the 35% glucose group the insulin response to a high glucose perfusate was severely blunted, and it was totally lost in the most hyperglycemic 50% glucose rats. In a second protocol that examined glucose potentiation of arginine-stimulated insulin release, a similar impairment in the ability of glucose to modulate the insulin response to arginine was found with increasing levels of chronic hyperglycemia. On the other hand, the ability of a high glucose concentration to inhibit arginine-stimulated glucagon release was preserved in all glucose-infused rats, but the glucagon levels attained in response to the arginine at 2.8 mM glucose were much less in the 50% glucose rats than in all the other groups. These data clearly show that after 48 h of marked hyperglycemia, glucose influence upon insulin secretion in the rat is severely impaired. This model provides a relatively easy and reproducible method to study the effects of long-term hyperglycemia on B cell function.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 908
page 908
icon of scanned page 909
page 909
icon of scanned page 910
page 910
icon of scanned page 911
page 911
icon of scanned page 912
page 912
icon of scanned page 913
page 913
icon of scanned page 914
page 914
icon of scanned page 915
page 915
Version history
  • Version 1 (March 1, 1986): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article (234)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 5 patents
54 readers on Mendeley
See more details